Leveraging the Power of Online Referral for E-Business: The Moderated Mediation Model
Abstract
:1. Introduction
2. Theoretical Background
2.1. Online Service Quality and Online Purchase Intention
2.1.1. Reliability (REL)
2.1.2. Responsiveness (RSP)
2.1.3. Competence (COP)
2.1.4. Engagement (ENG)
2.2. The Mediating Effect of Consumer Perception
2.3. The Moderating Effect on Online Customer Referral
3. Research Methods
4. Results and Analysis
5. Discussion
5.1. Theoretical Implications
5.2. Practical Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozdemir, E.; Sonmezay, M. The Effect of The E-Commerce Companies’ Benevolence, Integrity and Competence Characteristics on Consumers’ Perceived Trust, Purchase Intention and Attitudinal Loyalty. Bus. Econ. Res. J. 2020, 11, 807–821. [Google Scholar] [CrossRef]
- Peña-García, N.; Gil-Saura, I.; Rodríguez-Orejuela, A.; Siqueira-Junior, J.R. Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon 2020, 6, e04284. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Zhang, J.J.; Kim, D.H.; Chen, K.K.; Henderson, C.; Min, S.D.; Huang, H. Service quality, perceived value, customer satisfaction, and behavioral intention among fitness center members aged 60 years and over. Soc. Behav. Personal. 2014, 42, 757–767. [Google Scholar] [CrossRef]
- Toni, D.; Eberle, L.; Larentis, F.; Milan, G.S. Antecedents of Perceived Value and Repurchase Intention of Organic Food. J. Food Prod. Mark. 2018, 24, 456–475. [Google Scholar] [CrossRef]
- Han, M.C.; Kim, Y. Why consumers hesitate to shop online: Perceived risk and product involvement on Taobao.com. J. Promot. Manag. 2017, 23, 24–44. [Google Scholar] [CrossRef]
- Bleier, A.; Harmeling, C.M.; Palmatier, R.W. Creating effective online customer experiences. J. Relatsh. Mark. 2019, 83, 98–119. [Google Scholar] [CrossRef]
- Guta, M. Local Consumer Review Survey 2020. BrightLocal. 2020. Available online: https://www.brightlocal.com/insights/research/ (accessed on 9 December 2020).
- Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tour. Management. 2017, 58, 51–65. [Google Scholar] [CrossRef]
- Ahani, A.; Nilashi, M.; Yadegaridehkordi, E.; Sanzogni, L.; Tarik, A.; Knox, K.; Samad, S.; Ibrahim, O. Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. J. Retail. Consum. Serv. 2019, 51, 331–343. [Google Scholar] [CrossRef]
- Thomas, M.; Wirtz, B.W.; Weyerer, J.C. Determinants of Online Review Credibility and Its Impact on Consumers’ Purchase Intention. J. Electron. Commer. Res. 2019, 20, 1–20. [Google Scholar]
- Kano, N.; Seraku, N.; Takahashi, F.; Tsuji, S. Attractive quality and must-be quality. J. Jpn. Soc. Qual. Control 1984, 14, 39–48. (In Japanese) [Google Scholar]
- Zeithaml, V.A.; Parasuraman, A.; Berry, L. SERVQUAL: A Multiple Item Scale for Measuring Consumer Perceptions of Service Quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Johnston, R. The determinants of service quality: Satisfiers and dissatisfiers. Int. J. Serv. Ind. Manag. 1995, 8, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Kettinger, W.K.; Lee, C.C. Pragmatic perspectives on the measurement of information systems service quality. MIS Q. 1997, 21, 223–240. [Google Scholar] [CrossRef] [Green Version]
- Pitt, L.; Berthon, P.; Watson, R. Cyberservice: Taming service marketing problems with the World Wide Web. Bus. Horiz. 1999, 42, 11–18. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Parasuraman, A.; Malhotra, A. A Conceptual Framework for Understanding E-Service Quality: Implications for Future Research and Managerial Practice; MSI Working Paper Series, No. 00-115; Marketing Science Institute: Cambridge, MA, USA, 2001; pp. 1–49. [Google Scholar]
- Loiacono, E.T.; Watson, R.T.; Goodhue, D.L. WEBQUAL: A measure of Web site quality. Mark. Educ. Conf. Mark. Theory Appl. 2002, 13, 432–437. [Google Scholar]
- Zavareh, F.B.; Ariff, M.S.M.; Jusoh, A.; Zakuan, N.; Bahari, A.Z.; Ashourian, M. E-Service Quality Dimensions and Their Effects on E-Customer Satisfaction in Internet Banking Services. Soc. Behav. Sci. 2012, 40, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Rita, P.; Oliveira, T.; Farisa, A. The impact of e-service quality and customer satisfaction on customer behavior in online shopping. Heliyon 2019, 5, e02690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, J. E-service quality: A model of virtual service quality dimensions. Manag. Serv. Qual. Int. J. 2003, 13, 233–246. [Google Scholar] [CrossRef]
- Qureshi, N.A.; Khan, B.A.; Saif, J. The Application of Kano’s Model in The Airline Industry. Open Access in DiVA, Halmstad University, UK. 2017. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33486</div (accessed on 9 December 2020).
- Plehn, N.; Folkert, L.; Meissner, A.; Plehn, G. Expectations of Russian Medical Tourists on German Health Care Services: A Kano Model-Based Analysis. J. Tour. Hosp. 2016, 5, 1–6. [Google Scholar]
- Dominici, G.; Palumbo, F. The Drivers of Customer Satisfaction in the Hospitality Industry. Applying the Kano Model to Sicilian Hotels. Int. J. Leis. Tour. Mark. 2013, 3, 215–236. [Google Scholar] [CrossRef]
- Bu, K.; Park, S.Y. Are consumers in collectivist culture mostly indifferent to sports lesson programs? A DAQ simulation on the Kano fuzzy model. J. Bus. Res. 2016, 69, 1656–1660. [Google Scholar] [CrossRef]
- Yeh, T.M.; Chen, S.H. Integrating refined Kano model, quality function deployment, and grey relational analysis to improve service quality of nursing homes. Hum. Factors Ergon. Manuf. Serv. Ind. 2014, 24, 172–191. [Google Scholar] [CrossRef]
- Chang, K.C.; Chen, M.C.; Hsu, C.L. Identifying Critical Brand Contact Elements of a Tourist Destination: Applications of Kano’s Model and the Importance–satisfaction Model. Int. J. Tour. Res. 2012, 14, 205–221. [Google Scholar] [CrossRef]
- Basfirinci, C.; Mitra, A. A cross cultural investigation of airlines service quality through integration of Servqual and the Kano model. J. Air Transp. Manag. 2015, 42, 239–248. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Parasuraman, A.; Malhotra, A. Service quality delivery through Web sites: A critical review of extant knowledge. J. Acad. Mark. Sci. 2002, 30, 362–375. [Google Scholar] [CrossRef] [Green Version]
- Janda, S.; Trocchia, P.J.; Gwinner, K.P. Consumer perceptions of Internet retail service quality. Int. J. Serv. Ind. Manag. 2002, 13, 412–431. [Google Scholar] [CrossRef]
- Udo, G.J.; Bagchi, K.K.; Kirs, P.J. An assessment of customers’ e-service quality perception, satisfaction and intention. Int. J. Inf. Manag. 2010, 30, 481–492. [Google Scholar] [CrossRef]
- Holloway, B.B.; Beatty, S.E. Service Failure in Online Retailing: A Recovery Opportunity. J. Serv. Res. 2003, 6, 92–105. [Google Scholar] [CrossRef]
- Jun, M.; Yang, Z.; Kim, D. Customers’ perceptions of online retailing service quality and their satisfaction. Int. J. Qual. Reliab. Manag. 2004, 21, 817–840. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.H.; Hammerschmidt, M.; Falk, T. Measuring the quality of e-banking portals. Int. J. Bank Mark. 2005, 23, 53–175. [Google Scholar] [CrossRef]
- Wolfinbarger, M.; Gilly, M.C. eTailQ: Dimensionalizing, Measuring and Predicting Etail Quality. J. Retail. 2003, 79, 183–198. [Google Scholar] [CrossRef]
- Griffith, D.; Krampf, R.; Palmer, J. The Role of Interface in Electronic Commerce: Consumer Involvement with Print versus On-Line Catalogs. Int. J. Electron. Commer. 2001, 5, 135–153. [Google Scholar] [CrossRef]
- Liu, C.; Arnett, K. Exploring the Factors Associated with Web Site Success in the Context of Electronic Commerce. Inf. Manag. 2000, 38, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Fang, X. Online Service Quality Dimensions and Their Relationships with Satisfaction: A Content Analysis of Customer Reviews of Securities Brokerage Services. Int. J. Serv. Ind. Manag. 2004, 15, 302–326. [Google Scholar] [CrossRef]
- Liu, Y.C.; Hung, Y.Y. Self-efficacy as the moderator: Exploring driving factors of perceived social support for mainland Chinese students in Taiwan. Comput. Hum. Behav. 2016, 64, 455–462. [Google Scholar] [CrossRef]
- Sebastianelli, R.; Swift, C.; Tamimi, N. Factors affecting perceived learning, satisfaction, and quality in the online MBA: A structural equation modeling approach. J. Educ. Bus. 2015, 90, 296–305. [Google Scholar] [CrossRef]
- Asoodar, M.; Vaezi, S.; Izanloo, B. Framework to improve e-learner satisfaction and further strengthen e-learning implementation. Comput. Hum. Behav. 2016, 63, 704–716. [Google Scholar] [CrossRef]
- Van Wart, M.; Ni, A.; Medina, P. Integrating students’ perspectives about online learning: A hierarchy of factors. Int. J. Educ. Technol. High Educ. 2020, 17, 53–68. [Google Scholar] [CrossRef]
- Fang, Y.; Qureshi, I.; Sun, H.; McCole, P.; Ramsey, E.; Lim, K.H. Trust, satisfaction, and online repurchase intention: The moderating role of perceived effectiveness of e-commerce institutional mechanisms. MIS Q. 2014, 38, 407–427. [Google Scholar] [CrossRef] [Green Version]
- Pavlou, P.A.; Gefen, D. Building effective online marketplaces with institution-based trust. Inf. Syst. Res. 2004, 15, 37–59. [Google Scholar] [CrossRef] [Green Version]
- McKnight, D.; Chervany, N. What trust means in e-commerce customer relationships: An interdisciplinary conceptual typology. Int. J. Electron. Commer. 2002, 6, 35–59. [Google Scholar] [CrossRef]
- Clayton, K.E.; Blumberg, F.C.; Anthony, J.A. Linkages between course status, perceived course value, and students’ preference for traditional versus non-traditional learning environments. Comput. & Educ. 2018, 125, 175–181. [Google Scholar] [CrossRef]
- Grönroos, C.; Heinonen, F.; Isoniemi, K.; Lindholm, M. The Net Offer model: A case example from the virtual market space. Manag. Decis. 2000, 38, 243–252. [Google Scholar] [CrossRef]
- Redmond, P.; Abawi, L.; Brown, A.; Henderson, R.; Heffernan, A. An online engagement framework for higher education. Online Learn. J. 2018, 22, 183–204. [Google Scholar] [CrossRef]
- Pawan, F.; Paulus, T.M.; Yalcin, S.; Chang, C.F. Online Learning: Patterns of Engagement and Interaction among In-Service teachers. Lang. Learn. Technol. 2003, 7, 119–134. [Google Scholar]
- Bhatnagar, A.; Misra, S.M.; Rao, R.H. On risk, convenience, and Internet shopping behavior. Commun. ACM 2000, 43, 98–105. [Google Scholar] [CrossRef]
- Kawaf, F.; Tagg, S. Online shopping environments in fashion shopping: An S-O-R based review. Mark. Rev. 2012, 12, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The Theory of Planned Behaviour: Reactions and Reflections. Psychol. Health 1991, 50, 179–211. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.; Bamossy, G.; Askegaard, S.; Hogg, M.K. Consumer Behaviour: A European Perspective; Pearson Education: Harlow, UK, 2010. [Google Scholar]
- Sisson, D.C. Inauthentic communication, organization-public relationships, and trust: A content analysis of online astroturfing news coverage. Public Relat. Rev. 2017, 43, 788–795. [Google Scholar] [CrossRef]
- Malhotra, N.; Sahadev, S.; Purani, K. Psychological contract violation and customer intention to reuse online retailers: Exploring mediating and moderating mechanisms. J. Bus. Res. 2017, 75, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Izogo, E.E.; Jayawardhena, C. Online shopping experience in an emerging e-retailing market: Towards a conceptual model. J. Consum. Behav. 2018, 17, 379–392. [Google Scholar] [CrossRef]
- Kumar, V.; Reinartz, W. Creating Enduring Customer Value. J. Mark. 2016, 80, 36–68. [Google Scholar] [CrossRef]
- Margherio, L. The Emerging Digital Economy; Secretariat for Electronic Commerce: Washington, DC, USA, 1998. [Google Scholar]
- Curtis, T.; Abratt, R.; Rhoades, D.L.; Dion, P. Customer Loyalty, Repurchase and Satisfaction: A Meta-Analytical Review. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2011, 24, 1–26. [Google Scholar]
- Howat, G.; Assaker, G. The hierarchical effects of perceived quality on perceived value, satisfaction, and loyalty: Empirical results from public, outdoor aquatic centres in Australia. Sport Manag. Rev. 2013, 16, 268–284. [Google Scholar] [CrossRef]
- Cho, H.H.; Hong, I.Y. The impact of consumer characteristics upon trust and purchase intentions in b2c e-marketplaces. Inf. Syst. Rev. 2010, 12, 49–73. [Google Scholar]
- Joseph, M.; McClure, C.; Joseph, B. Service quality in the banking sector: The impact of technology on service delivery. Int. J. Bank Mark. 1999, 17, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Jun, M.; Cai, S. The key determinants of Internet banking service quality: A content analysis. Int. J. Bank Mark. 2001, 19, 276–291. [Google Scholar] [CrossRef]
- Clark, R.A.; Goldsmith, R. Market mavens: Psychological influences. Psychol. Mark. 2005, 22, 289–312. [Google Scholar] [CrossRef] [Green Version]
- Alalwan, A.A.; Rana, N.P.; Dwivedi, Y.K.; Algharabat, R. Social media in marketing: A review and analysis of the existing literature. Telemat. Inform. 2017, 34, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Filieri, R.; Hofacker, C.F.; Alguezaui, S. What makes information in online consumer reviews diagnostic over time? The role of review relevancy, factuality, currency, source credibility and ranking score. Comput. Hum. Behav. 2018, 80, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Baek, H.; Ahn, J.; Choi, Y. Helpfulness of Online Consumer Reviews: Readers’ Objectives and Review Cues. Int. J. Electron. Commerce. 2012, 17, 99–126. [Google Scholar] [CrossRef]
- Luo, C.; Luo, X.; Xu, Y.; Warkentin, M.; Sia, C.L. Examining the moderating role of sense of membership in online review evaluations. Inf. Manag. 2015, 52, 305–316. [Google Scholar] [CrossRef]
- Levy, S.; Gvili, Y. How credible is e-word of mouth across digital-marketing channels? The roles of social capital, information richness, and interactivity. J. Advert. Res. 2015, 55, 95–109. [Google Scholar] [CrossRef]
- Willemsen, L.M.; Neijens, P.C.; Bronner, F. The ironic effect of source identification on the perceived credibility of online product reviewers. J. Comput. -Mediat. Commun. 2012, 18, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Racherla, P.; Friske, W. Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories. Electron. Commer. Res. Appl. 2012, 11, 548–559. [Google Scholar] [CrossRef]
- González-Rodríguez, M.R.; Martínez-Torres, R.; Toral, S. Post-visit and pre-visit tourist destination image through eWOM sentiment analysis and perceived helpfulness. Int. J. Contemp. Hosp. Manag. 2016, 28, 2609–2627. [Google Scholar] [CrossRef]
- Saleem, A.; Ellahi, A. Influence of electronic word of mouth on purchase intention of fashion products on social networking websites. Pak. J. Commer. Soc. Sci. 2017, 11, 597–622. [Google Scholar]
- Zainal, N.T.A.; Harun, A.; Lily, J. Examining the mediating effect of attitude towards electronic words-of mouth (eWOM) on the relation between the trust in eWOM source and intention to follow eWOM among Malaysian travelers. Asia Pac. Manag. Rev. 2017, 22, 35–44. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modelling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar]
- Preacher, K.J.; Rucker, D.D.; Hayes, A.F. Addressing Moderated Mediation Hypotheses: Theory, Methods, and Prescriptions. Multivar. Behav. Res. 2007, 42, 185–227. [Google Scholar] [CrossRef]
- Muller, D.; Judd, C.M.; Yzerbyt, V.Y. When moderation is mediated and mediation is moderated. J. Personal. Soc. Psychol. 2005, 89, 852–863. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 2nd ed.; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Baker, J.; Grewal, D.; Parasuraman, A. The influence of store environment on quality inferences and store image. J. Acad. Mark. Sci. 1994, 22, 328–339. [Google Scholar] [CrossRef]
- Shao, C.Y.; Baker, J.A.; Wagner, J. The effects of appropriateness of service contact personnel dress on customer expectations of service quality and purchase intention: The moderating influences of involvement and gender. J. Bus. Res. 2004, 57, 1164–1176. [Google Scholar] [CrossRef]
- Jung, J.; Bapna, R.; Golden, J.M.; Sun, T. Words Matter! Toward a Prosocial Call-to-Action for Online Referral: Evidence from Two Field Experiments. Inf. Syst. Res. 2020, 31, 16–36. [Google Scholar] [CrossRef]
- Danniswara, R.; Sandhyaduhita, P.; Munajat, Q. The Impact of EWOM Referral, Celebrity Endorsement, and Information Quality on Purchase Decision: A Case of Instagram. Inf. Resour. Manag. J. 2017, 30, 23–43. [Google Scholar] [CrossRef]
- Abedi, E.; Ghorbanzadeh, D.; Rahehagh, A. Influence of eWOM information on consumers’ behavioral intentions in mobile social networks: Evidence of Iran. J. Adv. Manag. Res. 2020, 17, 84–109. [Google Scholar] [CrossRef]
- Renton, M.; Simmonds, H. Like is a verb: Exploring tie strength and casual brand use effects on brand attitudes and consumer online goal achievement. J. Prod. Brand Manag. 2017, 26, 365–374. [Google Scholar] [CrossRef]
- Wirtz, J.; Orsingher, C.; Cho, H. Engaging customers through online and offline referral reward programs. Eur. J. Mark. 2019, 53, 1962–1987. [Google Scholar] [CrossRef]
- Bozkurt, S.; Gligor, D.M.; Babin, B.J. The role of perceived firm social media interactivity in facilitating customer engagement behaviors. Eur. J. Mark. 2021, 55, 995–1022. [Google Scholar] [CrossRef]
- Orús, C.; Gurrea, R.; Ibáñez-Sánchez, S. The impact of consumers’ positive online recommendations on the omnichannel webrooming experience. Span. J. Mark. —ESIC 2019, 23, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Kalia, P.; Arora, R.; Kumalo, S. E-service quality, consumer satisfaction and future purchase intentions in e-retail. E-Serv. J. 2020, 10, 24. [Google Scholar] [CrossRef]
- Khatoon, S.; Zhengliang, X.; Hussain, H. The Mediating Effect of Customer Satisfaction on the Relationship between Electronic Banking Service Quality and Customer Purchase Intention: Evidence from the Qatar Banking Sector. SAGE Open 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Dedeke, A. Travel web-site design: Information task-fit, service quality and purchase intention. Tour. Manag. 2016, 54, 541–554. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Suomi, R. Measurement of E-service Quality: An Empirical Study in Online Travel Service. ECIS 2009 Proc. 2009, 191. Available online: http://aisel.aisnet.org/ecis2009/191 (accessed on 9 December 2020).
- Hayes, A.F. Partial, conditional, and moderated mediation: Quantification, inference, and interpretation. Commun. Monogr. 2018, 85, 4–40. [Google Scholar] [CrossRef]
Research Items (Cut-Off Point) | Factor Loading (>0.6) | AVE (>0.5) | CR (>0.7) | Cronbach’s α (>0.7) |
---|---|---|---|---|
Reliability | 0.759~0.829 | 0.650 | 0.848 | 0.848 |
Responsiveness | 0.623~0.877 | 0.586 | 0.806 | 0.800 |
Competence | 0.775~0.840 | 0.648 | 0.846 | 0.845 |
Engagement | 0.622~0.859 | 0.626 | 0.868 | 0.867 |
Consumer Perception | 0.635~0.838 | 0.635 | 0.838 | 0.803 |
Online Customer Referral | 0.705~0.860 | 0.585 | 0.808 | 0.838 |
Online Purchase Intention | 0.777~0.877 | 0.690 | 0.869 | 0.883 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H. Leveraging the Power of Online Referral for E-Business: The Moderated Mediation Model. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2594-2607. https://doi.org/10.3390/jtaer16070143
Chen C-H. Leveraging the Power of Online Referral for E-Business: The Moderated Mediation Model. Journal of Theoretical and Applied Electronic Commerce Research. 2021; 16(7):2594-2607. https://doi.org/10.3390/jtaer16070143
Chicago/Turabian StyleChen, Chih-Hung. 2021. "Leveraging the Power of Online Referral for E-Business: The Moderated Mediation Model" Journal of Theoretical and Applied Electronic Commerce Research 16, no. 7: 2594-2607. https://doi.org/10.3390/jtaer16070143
APA StyleChen, C. -H. (2021). Leveraging the Power of Online Referral for E-Business: The Moderated Mediation Model. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 2594-2607. https://doi.org/10.3390/jtaer16070143