Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 21, Issue 7 (July 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Dynamic inhibitor discovery: Protein-directed dynamic combinatorial chemistry is a technique for [...] Read more.
View options order results:
result details:
Displaying articles 1-146
Export citation of selected articles as:
Open AccessReview Targeting Epithelial–Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer
Molecules 2016, 21(7), 965; https://doi.org/10.3390/molecules21070965
Received: 10 June 2016 / Revised: 16 July 2016 / Accepted: 19 July 2016 / Published: 22 July 2016
Cited by 55 | PDF Full-text (648 KB) | HTML Full-text | XML Full-text
Abstract
Epithelial–mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous
[...] Read more.
Epithelial–mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous EMT-related signaling pathways are involved in drug resistance in cancer cells. Cells undergoing EMT show a feature similar to cancer stem cells (CSCs), such as an increase in drug efflux pumps and anti-apoptotic effects. Therefore, targeting EMT has been considered a novel opportunity to overcome cancer drug resistance. This review describes the mechanism by which EMT contributes to drug resistance in cancer cells and summarizes new advances in research in EMT-associated drug resistance. Full article
(This article belongs to the Special Issue New Approaches to Counteract Drug Resistance in Cancer)
Figures

Figure 1

Open AccessReview Immobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes
Molecules 2016, 21(7), 964; https://doi.org/10.3390/molecules21070964
Received: 22 June 2016 / Revised: 17 July 2016 / Accepted: 19 July 2016 / Published: 22 July 2016
Cited by 10 | PDF Full-text (6668 KB) | HTML Full-text | XML Full-text
Abstract
Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and
[...] Read more.
Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply investigated. Such a broad substrate specificity has suggested their use also in the bleaching of textile plant wastewaters. In fact, industrial dyes belong to very different chemical classes, being their effective and inexpensive oxidation an important challenge from both economic and environmental perspective. Accordingly, we review here the most widespread synthetic metalloporphyrins, and the most promising formulations for large-scale applications. In particular, we focus on the most convenient approaches for immobilization to conceive economical affordable processes. Then, the molecular routes of catalysis and the reported substrate specificity on the treatment of the most diffused textile dyes are encompassed, including the use of redox mediators and the comparison with the most common biological and enzymatic alternative, in order to depict an updated picture of a very promising field for large-scale applications. Full article
Figures

Figure 1

Open AccessArticle Synthesis, Characterization, and Retinol Stabilization of Fatty Amide-β-cyclodextrin Conjugates
Molecules 2016, 21(7), 963; https://doi.org/10.3390/molecules21070963
Received: 15 June 2016 / Revised: 19 July 2016 / Accepted: 20 July 2016 / Published: 22 July 2016
PDF Full-text (2080 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Amphiphilic cyclodextrin (CD) has been the object of growing scientific attention because of its two recognition sites, the cavity and the apolar heart, formed by self-assembly. In the present study, mono[6-deoxy-6-(octadecanamido)]-β-CD and mono[6-deoxy-6-(octadecenamido)]-β-CD were successfully synthesized by reacting mono-6-amino-6-deoxy-β-CD with N-hydroxysuccinimide esters
[...] Read more.
Amphiphilic cyclodextrin (CD) has been the object of growing scientific attention because of its two recognition sites, the cavity and the apolar heart, formed by self-assembly. In the present study, mono[6-deoxy-6-(octadecanamido)]-β-CD and mono[6-deoxy-6-(octadecenamido)]-β-CD were successfully synthesized by reacting mono-6-amino-6-deoxy-β-CD with N-hydroxysuccinimide esters of corresponding fatty acids in DMF. The structures were analyzed using nuclear magnetic resonance spectroscopy and mass spectrometry. The amphiphilic β-CDs were able to form self-assembled nano-vesicles in water, and the supramolecular architectures were characterized using fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. Using the cavity-type nano-vesicles, all-trans-retinol was efficiently encapsulated; it was then stabilized against the photo-degradation. Therefore, the present fatty amide-β-CD conjugate will be a potential molecule for carrier systems in cosmetic and pharmaceutical applications. Full article
(This article belongs to the Special Issue Cyclodextrin Chemistry)
Figures

Figure 1

Open AccessArticle Two New Pentacyclic Triterpene Saponins from the Leaves of Akebia trifoliata
Molecules 2016, 21(7), 962; https://doi.org/10.3390/molecules21070962
Received: 28 June 2016 / Revised: 18 July 2016 / Accepted: 19 July 2016 / Published: 22 July 2016
PDF Full-text (806 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new pentacyclic triterpene saponins, named akebiaoside K (1) and akebiaoside N (2), were isolated from the leaves of Akebia trifoliata, together with five known triterpenoids 37. They were all isolated from the leaves of
[...] Read more.
Two new pentacyclic triterpene saponins, named akebiaoside K (1) and akebiaoside N (2), were isolated from the leaves of Akebia trifoliata, together with five known triterpenoids 37. They were all isolated from the leaves of A. trifoliata for the first time. Their structures were established by spectral and chemical means. Triterpenes 5 and 7 were found to show moderate in vitro cytotoxicity against human tumor A549, HeLa and HepG2 cell lines, with IC50 values ranging from 0.023 to 0.038 mM. Triterpenes 57 were further revealed to show significant in vitro α-glucosidase inhibitory activity with IC50 values from 0.040 to 0.220 mM, making them more potent than the reference compound acarbose (IC50 0.409 mM). Meanwhile, no obvious inhibitory effects were observed for the isolated triterpene saponins 14 in both bioactivity assays. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading
Molecules 2016, 21(7), 961; https://doi.org/10.3390/molecules21070961
Received: 27 May 2016 / Revised: 6 July 2016 / Accepted: 15 July 2016 / Published: 22 July 2016
Cited by 1 | PDF Full-text (4053 KB) | HTML Full-text | XML Full-text
Abstract
Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development
[...] Read more.
Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical properties of trapped chlorophyll for diverse technological applications. The data herein collected suggest the possibility of applying the developed methodology to other active, captive molecules in order to synthesize new hybrid materials with optimized properties, suitable to be applied in diverse technological fields. Full article
Figures

Figure 1

Open AccessShort Note Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times
Molecules 2016, 21(7), 960; https://doi.org/10.3390/molecules21070960
Received: 12 June 2016 / Revised: 13 July 2016 / Accepted: 15 July 2016 / Published: 22 July 2016
PDF Full-text (585 KB) | HTML Full-text | XML Full-text
Abstract
Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in
[...] Read more.
Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines. Full article
(This article belongs to the collection Wine Chemistry)
Figures

Figure 1

Open AccessArticle New Isoxazolidine-Conjugates of Quinazolinones—Synthesis, Antiviral and Cytostatic Activity
Molecules 2016, 21(7), 959; https://doi.org/10.3390/molecules21070959
Received: 16 June 2016 / Revised: 14 July 2016 / Accepted: 19 July 2016 / Published: 22 July 2016
Cited by 2 | PDF Full-text (1059 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A novel series of (3-diethoxyphosphoryl)isoxazolidines substituted at C5 with various quinazolinones have been synthesized by the 1,3-dipolar cycloaddition of N-methyl-C-(diethoxyphosphoryl)nitrone with N3-substitued 2-vinyl-3H-quinazolin-4-ones. All isoxazolidines were assessed for antiviral activity against a broad range of DNA and RNA viruses.
[...] Read more.
A novel series of (3-diethoxyphosphoryl)isoxazolidines substituted at C5 with various quinazolinones have been synthesized by the 1,3-dipolar cycloaddition of N-methyl-C-(diethoxyphosphoryl)nitrone with N3-substitued 2-vinyl-3H-quinazolin-4-ones. All isoxazolidines were assessed for antiviral activity against a broad range of DNA and RNA viruses. Isoxazolidines trans-11f/cis-11f (90:10), trans-11h and trans-11i/cis-11i (97:3) showed weak activity (EC50 = 6.84, 15.29 and 9.44 μM) toward VZV (TK+ strain) which was only one order of magnitude lower than that of acyclovir used as a reference drug. Phosphonates trans-11b/cis-11b (90:10), trans-11c, trans-11e/cis-11e (90:10) and trans-11g appeared slightly active toward cytomegalovirus (EC50 = 27–45 μM). Compounds containing benzyl substituents at N3 in the quinazolinone skeleton exhibited slight antiproliferative activity towards the tested immortalized cells with IC50 in the 21–102 μM range. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessReview Metabolic Responses of Bacterial Cells to Immobilization
Molecules 2016, 21(7), 958; https://doi.org/10.3390/molecules21070958
Received: 5 July 2016 / Revised: 17 July 2016 / Accepted: 18 July 2016 / Published: 22 July 2016
Cited by 4 | PDF Full-text (4167 KB) | HTML Full-text | XML Full-text
Abstract
In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state
[...] Read more.
In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability. Full article
Figures

Figure 1

Open AccessArticle Qingxuan Jiangya Decoction Reverses Vascular Remodeling by Inducing Vascular Smooth Muscle Cell Apoptosis in Spontaneously Hypertensive Rats
Molecules 2016, 21(7), 956; https://doi.org/10.3390/molecules21070956
Received: 4 May 2016 / Revised: 17 July 2016 / Accepted: 19 July 2016 / Published: 22 July 2016
Cited by 2 | PDF Full-text (4483 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Qingxuan Jiangya Decoction (QXJYD), a traditional Chinese medicine formula prescribed by academician Ke-ji Chen, has been used in China to clinically treat hypertension for decades of years. However, the molecular mechanisms of its action remain largely unknown. In this study, we examined the
[...] Read more.
Qingxuan Jiangya Decoction (QXJYD), a traditional Chinese medicine formula prescribed by academician Ke-ji Chen, has been used in China to clinically treat hypertension for decades of years. However, the molecular mechanisms of its action remain largely unknown. In this study, we examined the therapeutic efficacy of QXJYD against elevated systolic blood pressure in the spontaneously hypertensive rat (SHR) model, and investigated the underlying molecular mechanisms. We found that oral administration of QXJYD significantly reduced the elevation of systolic blood pressure in SHR but had no effect on body weight change. Additionally, QXJYD treatment significantly decreased the media thickness and ratio of media thickness/lumen diameter in the carotid arteries of SHR. Moreover, QXJYD remarkably promoted apoptosis of vascular smooth muscle cells and reduced the expression of anti-apoptotic B-cell leukemia/lymphoma 2. Furthermore, QXJYD significantly decreased the plasma Angiotensin II level in SHR. Collectively, our findings suggest that reversing vascular remodeling via inducing VSMC apoptosis could be one of the mechanisms whereby QXJYD treats hypertension. Full article
(This article belongs to the Special Issue Effects of Natural Products in the Context of Cardiometabolic Disease)
Figures

Figure 1

Open AccessArticle Synthesis, Biological Evaluation and Molecular Modelling of 2′-Hydroxychalcones as Acetylcholinesterase Inhibitors
Molecules 2016, 21(7), 955; https://doi.org/10.3390/molecules21070955
Received: 16 March 2016 / Revised: 15 July 2016 / Accepted: 16 July 2016 / Published: 22 July 2016
Cited by 6 | PDF Full-text (1060 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of 2′-hydroxy- and 2′-hydroxy-4′,6′-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40–85 µM. Higher activities were generally
[...] Read more.
A series of 2′-hydroxy- and 2′-hydroxy-4′,6′-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40–85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE. Full article
(This article belongs to the Section Medicinal Chemistry)
Figures

Figure 1

Open AccessErratum Erratum: Liu, H., et al. Radical Scavenging by Acetone: A New Perspective to Understand Laccase/ABTS Inactivation and to Recover Redox Mediator. Molecules 2015, 20, 19907–19913
Molecules 2016, 21(7), 957; https://doi.org/10.3390/molecules21070957
Received: 19 July 2016 / Accepted: 20 July 2016 / Published: 21 July 2016
PDF Full-text (521 KB) | HTML Full-text | XML Full-text
Abstract
The Molecules Editorial Office wishes to report the following erratum to this paper [1].[...] Full article
Figures

Figure 2

Open AccessArticle Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models
Molecules 2016, 21(7), 954; https://doi.org/10.3390/molecules21070954
Received: 19 May 2016 / Revised: 11 July 2016 / Accepted: 15 July 2016 / Published: 21 July 2016
Cited by 4 | PDF Full-text (8937 KB) | HTML Full-text | XML Full-text
Abstract
Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo
[...] Read more.
Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–138.0 μM in 3D multicellular spheroids, which may be due to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was characterized in 2D tumor models. The results showed that the cellular uptake concentrations of RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by the cells showed only a small change with increasing drug concentrations, which may be due to the different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the fluorescence of compounds. Full article
(This article belongs to the Special Issue Drug Design and Discovery: Principles and Applications)
Figures

Figure 1

Open AccessLetter Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene
Molecules 2016, 21(7), 953; https://doi.org/10.3390/molecules21070953
Received: 17 May 2016 / Revised: 6 July 2016 / Accepted: 8 July 2016 / Published: 21 July 2016
Cited by 2 | PDF Full-text (7623 KB) | HTML Full-text | XML Full-text
Abstract
Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play
[...] Read more.
Adsorption of chlorinated organic contaminants (COCs) on carbon nanotubes (CNTs) has been gaining ground as a remedial platform for groundwater treatment. Applications depend on our mechanistic understanding of COC adsorption on CNTs. This paper lays out the nature of competing interactions at play in hybrid, membrane, and pure CNT based systems and presents results with the perspective of existing gaps in design strategies. First, current remediation approaches to trichloroethylene (TCE), the most ubiquitous of the COCs, is presented along with examination of forces contributing to adsorption of analogous contaminants at the molecular level. Second, we present results on TCE adsorption and remediation on pure and hybrid CNT systems with a stress on the specific nature of substrate and molecular architecture that would contribute to competitive adsorption. The delineation of intermolecular interactions that contribute to efficient remediation is needed for custom, scalable field design of purification systems for a wide range of contaminants. Full article
(This article belongs to the Special Issue Carbon Nanotubes: Advances and Applications)
Figures

Figure 1

Open AccessArticle Protective Effect of the Total Flavonoids from Rosa laevigata Michx Fruit on Renal Ischemia-Reperfusion Injury through Suppression of Oxidative Stress and Inflammation
Molecules 2016, 21(7), 952; https://doi.org/10.3390/molecules21070952
Received: 27 May 2016 / Revised: 9 July 2016 / Accepted: 19 July 2016 / Published: 21 July 2016
Cited by 11 | PDF Full-text (9169 KB) | HTML Full-text | XML Full-text
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Our previous studies have shown that the total flavonoids (TFs) from Rosa laevigata Michx fruit has various activities, however, there were no papers reporting the role of the TFs against
[...] Read more.
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Our previous studies have shown that the total flavonoids (TFs) from Rosa laevigata Michx fruit has various activities, however, there were no papers reporting the role of the TFs against renal IRI. In the present work, a hypoxia/reoxygenation (H/R) model in NRK-52E cells and ischemia-reperfusion model in rats were used. The results showed that the TFs significantly attenuated cell injury and markedly decreased serum creatinine (Cr) and blood urea nitrogen (BUN) levels in rats. Further investigation revealed that the TFs markedly decreased the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) and intracellular reactive oxygen species (ROS), up-regulated the levels of silent information regulator factor 2-related enzyme 1 (Sirt1), nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1), down-regulated the levels of Kelch like ECH-associated protein-1 (Keap1) and the nuclear translocation of nuclear factor-κBp65 (NF-κBp65), and decreased the mRNA levels of interleukine-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, inhibiting Sirt1 by siRNA showed that the role of the natural product in protecting renal IRI was significantly attenuated, suggesting that the effect of the extract against renal IRI depended on Sirt1. Taken together, the TFs has significantly nephroprotective effect against IRI by affecting Sirt1/Nrf2/NF-κB signaling pathway, which should be developed as a new therapeutic agent or food additives to treat acute kidney injury in the future. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessReview Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis
Molecules 2016, 21(7), 951; https://doi.org/10.3390/molecules21070951
Received: 15 June 2016 / Revised: 7 July 2016 / Accepted: 18 July 2016 / Published: 21 July 2016
Cited by 4 | PDF Full-text (3806 KB) | HTML Full-text | XML Full-text
Abstract
Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can
[...] Read more.
Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds from the Chiral Pool)
Figures

Figure 1

Back to Top