Next Article in Journal
Capsaicin: From Plants to a Cancer-Suppressing Agent
Previous Article in Journal
A New Method for the Isolation of Ergosterol and Peroxyergosterol as Active Compounds of Hygrophoropsis aurantiaca and in Vitro Antiproliferative Activity of Isolated Ergosterol Peroxide
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(7), 952; doi:10.3390/molecules21070952

Protective Effect of the Total Flavonoids from Rosa laevigata Michx Fruit on Renal Ischemia-Reperfusion Injury through Suppression of Oxidative Stress and Inflammation

College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 27 May 2016 / Revised: 9 July 2016 / Accepted: 19 July 2016 / Published: 21 July 2016
(This article belongs to the Section Natural Products)
View Full-Text   |   Download PDF [9169 KB, uploaded 21 July 2016]   |  

Abstract

Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Our previous studies have shown that the total flavonoids (TFs) from Rosa laevigata Michx fruit has various activities, however, there were no papers reporting the role of the TFs against renal IRI. In the present work, a hypoxia/reoxygenation (H/R) model in NRK-52E cells and ischemia-reperfusion model in rats were used. The results showed that the TFs significantly attenuated cell injury and markedly decreased serum creatinine (Cr) and blood urea nitrogen (BUN) levels in rats. Further investigation revealed that the TFs markedly decreased the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px) and intracellular reactive oxygen species (ROS), up-regulated the levels of silent information regulator factor 2-related enzyme 1 (Sirt1), nuclear factor erythroid 2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1), down-regulated the levels of Kelch like ECH-associated protein-1 (Keap1) and the nuclear translocation of nuclear factor-κBp65 (NF-κBp65), and decreased the mRNA levels of interleukine-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, inhibiting Sirt1 by siRNA showed that the role of the natural product in protecting renal IRI was significantly attenuated, suggesting that the effect of the extract against renal IRI depended on Sirt1. Taken together, the TFs has significantly nephroprotective effect against IRI by affecting Sirt1/Nrf2/NF-κB signaling pathway, which should be developed as a new therapeutic agent or food additives to treat acute kidney injury in the future. View Full-Text
Keywords: Rosa laevigata Michx; total flavonoids; renal ischemia reperfusion; oxidative stress; inflammation Rosa laevigata Michx; total flavonoids; renal ischemia reperfusion; oxidative stress; inflammation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zhao, L.; Xu, L.; Tao, X.; Han, X.; Yin, L.; Qi, Y.; Peng, J. Protective Effect of the Total Flavonoids from Rosa laevigata Michx Fruit on Renal Ischemia-Reperfusion Injury through Suppression of Oxidative Stress and Inflammation. Molecules 2016, 21, 952.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top