Next Article in Journal
Identification of Chemical Composition of Leaves and Flowers from Paeonia rockii by UHPLC-Q-Exactive Orbitrap HRMS
Previous Article in Journal
Novel Improved Synthesis of HSP70 Inhibitor, Pifithrin-μ. In Vitro Synergy Quantification of Pifithrin-μ Combined with Pt Drugs in Prostate and Colorectal Cancer Cells
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(7), 948; doi:10.3390/molecules21070948

Stability and Degradation of Caffeoylquinic Acids under Different Storage Conditions Studied by High-Performance Liquid Chromatography with Photo Diode Array Detection and High-Performance Liquid Chromatography with Electrospray Ionization Collision-Induced Dissociation Tandem Mass Spectrometry

1
School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
2
Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
3
Beijing Institution of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
These authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 5 May 2016 / Revised: 8 July 2016 / Accepted: 18 July 2016 / Published: 21 July 2016
View Full-Text   |   Download PDF [4868 KB, uploaded 21 July 2016]   |  

Abstract

Caffeoylquinic acids (CQAs) are main constituents in many herbal medicines with various biological and pharmacological effects. However, CQAs will degrade or isomerize when affected by temperature, pH, light, etc. In this study, high-performance liquid chromatography with photodiode array detection (HPLC-PDA) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) was utilized to study the stability and degradation of CQAs (three mono-acyl CQAs and four di-acyl CQAs) under various ordinary storage conditions (involving different temperatures, solvents, and light irradiation). The results indicated that the stability of CQAs was mainly affected by temperature and light irradiation, while solvents did not affect it in any obvious way under the conditions studied. Mono-acyl CQAs were generally much more stable than di-acyl CQAs under the same conditions. Meanwhile, the chemical structures of 30 degradation products were also characterized by HPLC-MSn, inferring that isomerization, methylation, and hydrolysis were three major degradation pathways. The result provides a meaningful clue for the storage conditions of CQAs standard substances and samples. View Full-Text
Keywords: caffeoylquinic acids (CQAs); stability; temperature; light irradiation; solvent; HPLC-MSn caffeoylquinic acids (CQAs); stability; temperature; light irradiation; solvent; HPLC-MSn
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Xue, M.; Shi, H.; Zhang, J.; Liu, Q.-Q.; Guan, J.; Zhang, J.-Y.; Ma, Q. Stability and Degradation of Caffeoylquinic Acids under Different Storage Conditions Studied by High-Performance Liquid Chromatography with Photo Diode Array Detection and High-Performance Liquid Chromatography with Electrospray Ionization Collision-Induced Dissociation Tandem Mass Spectrometry. Molecules 2016, 21, 948.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top