Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = zma-miR528

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3151 KB  
Article
In Silico Prediction of Maize microRNA as a Xanthine Oxidase Inhibitor: A New Approach to Treating Hyperuricemia Patients
by Manas Joshi and Mohd Mabood Khan
Non-Coding RNA 2025, 11(1), 6; https://doi.org/10.3390/ncrna11010006 - 15 Jan 2025
Viewed by 1904
Abstract
Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with [...] Read more.
Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity. The identification of stable Zea mays miRNA (zma-miR) in humans has opened up a new avenue for speculation about its part in regulating novel human gene targets. Aims: The aim of this study was to investigate the prospects of zma-miRs in XO gene regulation, the possible mechanism, and the interaction analysis of the zma-miR-XO mRNA transcript. Method: Significant features of miRNA-mRNA interaction were revealed using two popular miRNA target prediction software—intaRNA (version 3.3.1) and RNA hybrid (version 2.2.1) Results: Only 12 zma-miR-156 variants, out of the 325 zma-miR’s sequences reported in the miRNA database, efficiently interact with the 3′UTR of the XO gene. Characteristics of miRNA-mRNA interaction were as follows: the positioning of zma-miR-156 variants shows that they all have the same 11-mer binding sites, guanine (G), and uracil (U) loops at the 13th and 14th positions from the 5′ end, and no G: U wobble pairing. These factors are related to the inhibition of functional mRNA expression. Additionally, the zma-miR-156 variants exhibit a single-base variation (SBV), which leads to distinct yet highly effective alterations in their interaction pattern with the XO mRNA transcript and the corresponding free energy values. Conclusion: Therefore, we propose that zma-miR-156 variants may be a promising new bioactive compound against hyperuricemia and related diseases. Full article
Show Figures

Figure 1

20 pages, 3465 KB  
Article
Transcriptional Regulation of zma-MIR528a by Action of Nitrate and Auxin in Maize
by Eduardo Luján-Soto, Paola I. Aguirre de la Cruz, Vasti T. Juárez-González, José L. Reyes, María de la Paz Sanchez and Tzvetanka D. Dinkova
Int. J. Mol. Sci. 2022, 23(24), 15718; https://doi.org/10.3390/ijms232415718 - 11 Dec 2022
Cited by 9 | Viewed by 3323
Abstract
In recent years, miR528, a monocot-specific miRNA, has been assigned multifaceted roles during development and stress response in several plant species. However, the transcription regulation and the molecular mechanisms controlling MIR528 expression in maize are still poorly explored. Here we analyzed the zma- [...] Read more.
In recent years, miR528, a monocot-specific miRNA, has been assigned multifaceted roles during development and stress response in several plant species. However, the transcription regulation and the molecular mechanisms controlling MIR528 expression in maize are still poorly explored. Here we analyzed the zma-MIR528a promoter region and found conserved transcription factor binding sites related to diverse signaling pathways, including the nitrate (TGA1/4) and auxin (AuxRE) response networks. Accumulation of both pre-miR528a and mature miR528 was up-regulated by exogenous nitrate and auxin treatments during imbibition, germination, and maize seedling establishment. Functional promoter analyses demonstrated that TGA1/4 and AuxRE sites are required for transcriptional induction by both stimuli. Overall, our findings of the nitrogen- and auxin-induced zma-MIR528a expression through cis-regulatory elements in its promoter contribute to the knowledge of miR528 regulome. Full article
(This article belongs to the Special Issue The World of Plant Non-coding RNAs)
Show Figures

Figure 1

3 pages, 548 KB  
Commentary
Frontline Warrior microRNA167: A Battle of Survival
by Gurparsad Singh Suri and Manish Tiwari
Int. J. Plant Biol. 2022, 13(4), 598-600; https://doi.org/10.3390/ijpb13040047 - 5 Dec 2022
Cited by 2 | Viewed by 2655
Abstract
Plant pathogens such as viruses are detrimental to the survivorship of plant species. Coinfection of maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) causes a deadly disease in maize. An investigation by Liu et al. (2022) showed the role of [...] Read more.
Plant pathogens such as viruses are detrimental to the survivorship of plant species. Coinfection of maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) causes a deadly disease in maize. An investigation by Liu et al. (2022) showed the role of Zma-miR167 in positively imparting resistance against the MCMV and SCMV. The authors identified ZmARF3 and ZmARF30 as the targets of Zma-miR167. ZmARF3 and ZmARF30 were identified as transcription factors that bind the cis-element in ZmPAO1 promoters to activate its expression. The authors showed how the Zma-miR167-ZmARF3/30-ZmPAO1 module functions differently in resistant and susceptible lines with high expression of Zma-miR167 in resistant lines correlated with the resistant phenotype. Finally, the authors concluded that MCMV-encoded p31 protein enhances ZmPAO1 enzyme activity for its survival in the host. Full article
Show Figures

Figure 1

13 pages, 1655 KB  
Article
Characteristics of microRNAs and Target Genes in Maize Root under Drought Stress
by Qi Tang, Haozhe Lv, Qimeng Li, Xiaoyue Zhang, Le Li, Jie Xu, Fengkai Wu, Qingjun Wang, Xuanjun Feng and Yanli Lu
Int. J. Mol. Sci. 2022, 23(9), 4968; https://doi.org/10.3390/ijms23094968 - 29 Apr 2022
Cited by 20 | Viewed by 3591
Abstract
Maize (Zea mays) is an important multi-functional crop. The growth and yield of maize are severely affected by drought stress. Previous studies have shown that microRNAs (miRNAs) in maize play important roles in response to abiotic stress; however, their roles in [...] Read more.
Maize (Zea mays) is an important multi-functional crop. The growth and yield of maize are severely affected by drought stress. Previous studies have shown that microRNAs (miRNAs) in maize play important roles in response to abiotic stress; however, their roles in response to drought stress in maize roots is unclear. In our study, we found 375 miRNAs in the roots of 16 inbred lines. Of the 16 lines, zma-MIR168, zma-MIR156, and zma-MIR166 were highly expressed, whereas zma-MIR399, zma-MIR2218, and zma-MIR2275 exhibited low expression levels. The expression patterns of miRNA in parental lines and their derived RILs are different. Over 50% of miRNAs exhibited a lower expression in recombinant inbred lines than in parents. The expression of 50 miRNAs was significantly altered under water stress (WS) in at least three inbred lines, and the expression of miRNAs in drought-tolerant lines changed markedly. To better understand the reasons for miRNA response to drought, the degree of histone modifications for miRNA genes was estimated. The methylation level of H3K4 and H3K9 in miRNA precursor regions changed more noticeably after WS, but no such phenomenon was seen for DNA methylation and m6A modification. After the prediction of miRNA targets using psRNATarget and psRobot, we used correlation analysis and qRT-PCR to further investigate the relationship between miRNAs and target genes. We found that 87 miRNA–target pairs were significantly negatively correlated. In addition, a weighted gene co-expression network analysis using miRNAs, as well as their predicted targets, was conducted to reveal that miR159, miR394, and miR319 may be related to maize root growth. The results demonstrated that miRNAs might play essential roles in the response to drought stress. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs in the Era of Biological Big Data)
Show Figures

Figure 1

19 pages, 5311 KB  
Article
ZmFAR1 and ZmABCG26 Regulated by microRNA Are Essential for Lipid Metabolism in Maize Anther
by Yilin Jiang, Ziwen Li, Xinze Liu, Taotao Zhu, Ke Xie, Quancan Hou, Tingwei Yan, Canfang Niu, Shaowei Zhang, Mengbing Yang, Rongrong Xie, Jing Wang, Jinping Li, Xueli An and Xiangyuan Wan
Int. J. Mol. Sci. 2021, 22(15), 7916; https://doi.org/10.3390/ijms22157916 - 24 Jul 2021
Cited by 38 | Viewed by 3914
Abstract
The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown [...] Read more.
The function and regulation of lipid metabolic genes are essential for plant male reproduction. However, expression regulation of lipid metabolic genic male sterility (GMS) genes by noncoding RNAs is largely unclear. Here, we systematically predicted the microRNA regulators of 34 maize white brown complex members in ATP-binding cassette transporter G subfamily (WBC/ABCG) genes using transcriptome analysis. Results indicate that the ZmABCG26 transcript was predicted to be targeted by zma-miR164h-5p, and their expression levels were negatively correlated in maize B73 and Oh43 genetic backgrounds based on both transcriptome data and qRT-PCR experiments. CRISPR/Cas9-induced gene mutagenesis was performed on ZmABCG26 and another lipid metabolic gene, ZmFAR1. DNA sequencing, phenotypic, and cytological observations demonstrated that both ZmABCG26 and ZmFAR1 are GMS genes in maize. Notably, ZmABCG26 proteins are localized in the endoplasmic reticulum (ER), chloroplast/plastid, and plasma membrane. Furthermore, ZmFAR1 shows catalytic activities to three CoA substrates in vitro with the activity order of C12:0-CoA > C16:0-CoA > C18:0-CoA, and its four key amino acid sites were critical to its catalytic activities. Lipidomics analysis revealed decreased cutin amounts and increased wax contents in anthers of both zmabcg26 and zmfar1 GMS mutants. A more detailed analysis exhibited differential changes in 54 monomer contents between wild type and mutants, as well as between zmabcg26 and zmfar1. These findings will promote a deeper understanding of miRNA-regulated lipid metabolic genes and the functional diversity of lipid metabolic genes, contributing to lipid biosynthesis in maize anthers. Additionally, cosegregating molecular markers for ZmABCG26 and ZmFAR1 were developed to facilitate the breeding of male sterile lines. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs in the Era of Biological Big Data)
Show Figures

Figure 1

15 pages, 2550 KB  
Article
MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis
by Eduardo Luján-Soto, Vasti T. Juárez-González, José L. Reyes and Tzvetanka D. Dinkova
Int. J. Mol. Sci. 2021, 22(10), 5310; https://doi.org/10.3390/ijms22105310 - 18 May 2021
Cited by 15 | Viewed by 3561
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. [...] Read more.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs)
Show Figures

Figure 1

16 pages, 3885 KB  
Article
System Analysis of MIRNAs in Maize Internode Elongation
by Chuanxi Peng, Xing Wang, Tianyu Feng, Rui He, Mingcai Zhang, Zhaohu Li, Yuyi Zhou and Liusheng Duan
Biomolecules 2019, 9(9), 417; https://doi.org/10.3390/biom9090417 - 27 Aug 2019
Cited by 16 | Viewed by 4806
Abstract
MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs [...] Read more.
MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors. Full article
(This article belongs to the Special Issue Phytohormones)
Show Figures

Figure 1

Back to TopTop