Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = yellow gentian

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3096 KiB  
Article
Optimization of Swertiamarin and Isogentisin Extraction from Gentiana lutea L. Leaves by Response Surface Methodology
by Katarina Šavikin, Miloš S. Jovanović, Gordana Zdunić, Jelena Živković, Dušanka Kitić, Dubravka Bigović and Teodora Janković
Plants 2025, 14(16), 2538; https://doi.org/10.3390/plants14162538 - 15 Aug 2025
Viewed by 240
Abstract
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the [...] Read more.
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the destruction of the plant, using the more readily available leaves could help reduce the pressure on this endangered natural resource. This study aimed to optimize the ultrasound-assisted extraction of the secoiridoid swertiamarin and the xanthone isogentisin from G. lutea leaves using response surface methodology (RSM). Subsequently, the stability of the bioactive compounds (swertiamarin, gentiopicrin, mangiferin, isoorientin, isovitexin, and isogentisin) in the optimized extract was monitored over a 30-day period under different storage conditions. The influence of extraction time (5–65 min), ethanol concentration (10–90% v/v), liquid-to-solid ratio (10–50 mL/g), and temperature (20–80 °C) was analyzed at five levels according to a central composite design. The calculated optimal extraction conditions for the simultaneous maximization of swertiamarin and isogentisin yields were 50 min extraction time, 30% v/v ethanol concentration, 30 mL/g liquid-to-solid ratio, and 62.7 °C extraction temperature. Under these conditions, the experimentally obtained yields were 3.75 mg/g dry weight for swertiamarin and 1.57 mg/g dry weight for isogentisin, closely matching the RSM model predictions. The stability study revealed that low-temperature storage preserved major bioactive compounds, whereas mangiferin stability was compromised by elevated temperature and light exposure. The established models support the production of standardized G. lutea leaf extracts and may facilitate the efficient separation and purification of their bioactive compounds, thereby contributing to the further valorization of this valuable plant material. Full article
(This article belongs to the Special Issue Efficacy, Safety and Phytochemistry of Medicinal Plants)
Show Figures

Figure 1

17 pages, 1205 KiB  
Article
Feeding a Bitter Mix of Gentian and Grape Seed Extracts with Caffeine Reduces Appetite and Body Fat Deposition and Improves Meat Colour in Pigs
by Maximiliano Müller, Xinle Tan, Fan Liu, Marta Navarro, Louwrens C. Hoffman and Eugeni Roura
Animals 2025, 15(14), 2129; https://doi.org/10.3390/ani15142129 - 18 Jul 2025
Viewed by 407
Abstract
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in [...] Read more.
Dietary bitter compounds such as caffeine have the potential to reduce backfat in pigs. However, the use of caffeine as a feed additive has restrictions in many countries. It was hypothesised that grape seed and gentian plant extracts (GG) could replace caffeine in feed due to their bitterness and antiadipogenic effects. The effect of caffeine (0.5 g/kg), GG (2 g/kg) alone or in combination with caffeine (BM) at increasing concentrations (0.5, 1, 1.5, or 2 g/kg) on feed efficiency, carcass, and meat quality was assessed in finishing pigs (Large White × Landrace). Growth performance and carcass traits were evaluated at a pen level (n = 14). Loins (longissimus thoracis) were removed from eight pig/treatment at the abattoir to assess drip loss, lightness (L*), redness (a*), yellowness (b*), chroma (C*), hue angle (h°), pH, cook loss, and shear force. A linear increase (p < 0.05) in loin a*, b*, and C* values and a linear decrease (p < 0.05) in ADFI, ADG, backfat, dressing percentage, and HSCW were observed with increasing BM levels. At 1.5 g/kg, BM increased the loins a* (p < 0.05), b* (p < 0.05) and C* values (p < 0.05) compared to the control. Twenty-two proteins related to energy metabolism and myofibril assembly were identified to be upregulated (FDR < 0.05) in BM vs. control loins. In conclusion, GG could be used in combination with low doses of caffeine to modulate appetite and carcass leanness and improve pork colour. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

13 pages, 1916 KiB  
Article
Holobiont Rebalancing by a Natural Gentian Extract on a Skin Dehydration Model
by Lauriane N. Roux, Assia Dreux-Zigha, Célia Rey, Carine Boutot, Yoan Laurent, Sercan Beytur, Isabelle Metton, Jean-Daniel Abraham and Jean-Yves Berthon
Cosmetics 2024, 11(4), 132; https://doi.org/10.3390/cosmetics11040132 - 1 Aug 2024
Viewed by 2651
Abstract
Human skin homeostasis is partly maintained by a complex microscopic ecosystem known as the microbiota. Together, the skin host and microbiota form a synergistic evolutionary unit referred to as ‘skin holobiont’, which can be modulated by various stresses. By extracting organic wild yellow [...] Read more.
Human skin homeostasis is partly maintained by a complex microscopic ecosystem known as the microbiota. Together, the skin host and microbiota form a synergistic evolutionary unit referred to as ‘skin holobiont’, which can be modulated by various stresses. By extracting organic wild yellow gentian roots enhanced through fermentation of a rare and resistant bacterium, Sphingomonas faeni, a cosmetic active ingredient was developed to rebalance the holobiont functions as well as hydric and lipidic skin content. Indeed, gentian-fermented extract (GFE) boosts hyaluronic acid (HA) biosynthesis in vitro, stimulates the HA receptor, CD44, and allows water storage and retention through its signaling cascade by epidermal reinforcement. Importantly, GFE also increases lipid synthesis by +147% in vitro, which was confirmed clinically on volunteers with dehydrated and dry skin who presented an increase in hydration and skin surface lipids after 28 days of treatment. Furthermore, a metaproteomic study highlighted that there is a slow-down of skin barrier and antioxidant proteins from both human and microbial origins, with age and dehydration, that can be reversed by GFE after 56 days. In conclusion, acting on the HA metabolism and specific microbiota species, GFE rebalances the skin holobiont for a reinforced and rehydrated skin with optimal lipid content. Full article
(This article belongs to the Special Issue 10th Anniversary of Cosmetics—Recent Advances and Perspectives)
Show Figures

Figure 1

13 pages, 1997 KiB  
Article
Development of a Novel Flavored Goat Cheese with Gentiana lutea Rhizomes
by Christian Coelho, Cécile Bord, Karine Fayolle, Cindy Bibang and Stéphanie Flahaut
Foods 2023, 12(3), 468; https://doi.org/10.3390/foods12030468 - 19 Jan 2023
Cited by 2 | Viewed by 2778
Abstract
Gentiana lutea rhizomes, generally used as a bittering agent in food, were harvested from two geographical sites (Massif Central: MC and Jura: J) to evaluate their potential use in the flavoring step during goat cheesemaking. Gentian flavored goat cheeses (MCGC and JGC) were [...] Read more.
Gentiana lutea rhizomes, generally used as a bittering agent in food, were harvested from two geographical sites (Massif Central: MC and Jura: J) to evaluate their potential use in the flavoring step during goat cheesemaking. Gentian flavored goat cheeses (MCGC and JGC) were elaborated by a one-night immersion of unflavored goat cheeses (CGC) into gentian-infused whey. The impregnation of gentian in goat cheeses was evaluated by chemical and sensory analysis. The chemical composition of cheeses was analyzed by HS-SPME-GC-MS (Head-Space—Solid Phase MicroExtraction—Gas Chromatography—Mass Spectrometry) for volatile compounds (alcohols, ketones, aldehydes, esters, alkenes, alkanes, acids, terpenes) and UHPLC-DAD (Ultra High-Performance Liquid Chromatography—Diode Array Detector) for gentian bitter compounds (seco-iridoids). The sensory analysis consisted of a bitterness rating and a free description of cheeses by 17 trained panelists. Results of the study highlighted that unflavored goat cheeses presented higher unpleasant notes (goaty and lactic whey) and higher amounts of hexanoic acid and toluene compared to gentian flavored goat cheeses. The bitterness of gentian flavored goat cheeses was higher compared to unflavored cheeses and could be explained by loganic acid transfer from yellow gentian to flavored cheeses. Other free descriptors of gentian flavored goat cheeses revealed more complex notes (herbal, vegetal, floral, sweet, spicy and creamy) and higher relative amounts of volatile compounds such as 3-methyl butanoic acid, 2-methyl propanoic acid, 4-methyl decane, 2,3-butanediol, ethanol, diacetyl, methyl acetate and 2-phenylethyl acetate, compared to unflavored cheeses. Phenylethyl acetate was the only volatile compound that enabled differentiation of gentian origin on gentian flavored goat cheeses. Gentian rhizomes could be considered a promising flavoring agent contributing to the olfactive and gustative complexity of flavored goat cheeses and the reduction of their goaty perceptions. Full article
(This article belongs to the Special Issue Current Research on Flavor Compounds in Fermented Food Products)
Show Figures

Graphical abstract

Back to TopTop