Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = wireless nanosensor networks (WNSNs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4527 KiB  
Review
Key Roles of Plasmonics in Wireless THz Nanocommunications—A Survey
by Efthymios Lallas
Appl. Sci. 2019, 9(24), 5488; https://doi.org/10.3390/app9245488 - 13 Dec 2019
Cited by 16 | Viewed by 5769
Abstract
Wireless data traffic has experienced an unprecedented boost in past years, and according to data traffic forecasts, within a decade, it is expected to compete sufficiently with wired broadband infrastructure. Therefore, the use of even higher carrier frequency bands in the THz range, [...] Read more.
Wireless data traffic has experienced an unprecedented boost in past years, and according to data traffic forecasts, within a decade, it is expected to compete sufficiently with wired broadband infrastructure. Therefore, the use of even higher carrier frequency bands in the THz range, via adoption of new technologies to equip future THz band wireless communication systems at the nanoscale is required, in order to accommodate a variety of applications, that would satisfy the ever increasing user demands of higher data rates. Certain wireless applications such as 5G and beyond communications, network on chip system architectures, and nanosensor networks, will no longer satisfy speed and latency demands with existing technologies and system architectures. Apart from conventional CMOS technology, and the already tested, still promising though, photonic technology, other technologies and materials such as plasmonics with graphene respectively, may offer a viable infrastructure solution on existing THz technology challenges. This survey paper is a thorough investigation on the current and beyond state of the art plasmonic system implementation for THz communications, by providing in-depth reference material, highlighting the fundamental aspects of plasmonic technology roles in future THz band wireless communication and THz wireless applications, that will define future demands coping with users’ needs. Full article
Show Figures

Figure 1

23 pages, 4236 KiB  
Article
An Energy Balance Clustering Routing Protocol for Intra-Body Wireless Nanosensor Networks
by Juan Xu, Yan Zhang, Jiaolong Jiang and Jiali Kan
Sensors 2019, 19(22), 4875; https://doi.org/10.3390/s19224875 - 8 Nov 2019
Cited by 21 | Viewed by 6318
Abstract
Wireless NanoSensor Networks (WNSNs) are a new type of network that combines nanotechnology and sensor networks. Because WNSNs have great application prospects in intra-body health monitoring, biomedicine and damage detection, intra-body Wireless NanoSensor Networks (iWNSNs) have become a new research hotspot. An energy [...] Read more.
Wireless NanoSensor Networks (WNSNs) are a new type of network that combines nanotechnology and sensor networks. Because WNSNs have great application prospects in intra-body health monitoring, biomedicine and damage detection, intra-body Wireless NanoSensor Networks (iWNSNs) have become a new research hotspot. An energy balance clustering routing protocol (EBCR) is proposed for the intra-body nanosensor nodes with low computing and processing capabilities, short communication range and limited energy storage. The protocol reduces the communication load of nano-nodes by adopting a new hierarchical clustering method. The nano-nodes in the cluster can transmit data directly to the cluster head nodes by one-hop, and the cluster head nodes can transmit data to the nano control node by multi-hop routing among themselves. Furthermore, there is a tradeoff between distance and channel capacity when choosing the next hop node in order to reduce energy consumption while ensuring successful data packet transmission. The simulation results show that the protocol has great advantages in balancing energy consumption, prolonging network lifetime and ensuring data packet transmission success rate. It can be seen that EBCR protocol can be used as an effective routing scheme for iWNSNs. Full article
(This article belongs to the Special Issue Body Sensors Networks for E-Health Applications)
Show Figures

Figure 1

13 pages, 1442 KiB  
Article
Centralized Energy Harvesting-Based TDMA Protocol for Terahertz NanoSensor Networks
by Juan Xu, Jiali Kan and Yan Zhang
Sensors 2019, 19(20), 4508; https://doi.org/10.3390/s19204508 - 17 Oct 2019
Cited by 13 | Viewed by 3299
Abstract
Terahertz wireless nano-sensor networks (WNSNs) are novel networks interconnecting multiple nano-devices by means of wireless communication. In this paper, a centralized energy harvesting-based time division multiple access (TDMA) protocol, called CEH-TDMA is proposed. This protocol examines the data transmission process from a global [...] Read more.
Terahertz wireless nano-sensor networks (WNSNs) are novel networks interconnecting multiple nano-devices by means of wireless communication. In this paper, a centralized energy harvesting-based time division multiple access (TDMA) protocol, called CEH-TDMA is proposed. This protocol examines the data transmission process from a global perspective, where the nano-controller regulates the channel access and allocates time slots for all nano-nodes. First, each nano-node sends the remaining energy and the number of packets in its data buffer to the nano-controller, and then, the nano-controller constructs a Markov decision process (MDP) model according to the state information of all nano-nodes, where the energy consumption and the number of transmitted packets in the entire network are considered as impact factors in designing the award function in the MDP model. Finally, a globally optimal slot allocation strategy is obtained, which maximizes the amount of packet transmission in the perpetual WNSNs. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy-Neutral IoT Devices and Systems)
Show Figures

Figure 1

13 pages, 2436 KiB  
Article
On the Nature of Energy-Feasible Wireless Nanosensor Networks
by Sebastian Canovas-Carrasco, Antonio-Javier Garcia-Sanchez and Joan Garcia-Haro
Sensors 2018, 18(5), 1356; https://doi.org/10.3390/s18051356 - 27 Apr 2018
Cited by 30 | Viewed by 4315
Abstract
Electromagnetic nanocommunications, understood as the communication between electronic nanoscale devices through electromagnetic waves in the terahertz band, has attracted increasing attention in recent years. In this regard, several solutions have already been proposed. However, many of them do not sufficiently capture the significance [...] Read more.
Electromagnetic nanocommunications, understood as the communication between electronic nanoscale devices through electromagnetic waves in the terahertz band, has attracted increasing attention in recent years. In this regard, several solutions have already been proposed. However, many of them do not sufficiently capture the significance of the limitations in nanodevice energy-gathering and storing capacity. In this paper, we address key factors affecting the energy consumption of nanodevices, highlighting the effect of the communication scheme employed. Then, we also examine how nanodevices are powered, focusing on the main parameters governing the powering nanosystem. Different mathematical expressions are derived to analyze the impact of these parameters on its performance. Based on these expressions, the functionality of a nanogenerator is evaluated to gain insight into the conditions under which a wireless nanosensor network (WNSN) is viable from the energetic point of view. The results reveal that a micrometer-sized piezoelectric system in high-lossy environments (exceeding 100 dB/mm) becomes inoperative for transmission distances over 1.5 mm by its inability to harvest and store the amount of energy required to overcome the path loss. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Spain 2018)
Show Figures

Figure 1

Back to TopTop