Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = wire mesh dampers (WMDs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10033 KiB  
Article
Effect of Heat Treatment on the Vibration Isolation Performance of Axially Symmetric NiTi Wire Mesh Damper
by Yichuan Shao, Mingyang Su, Yaoqiang Wei, Jinyu Wang, Yiwan Wu, Xiaochao Chen, Hongbai Bai and Xin Xue
Symmetry 2022, 14(10), 2209; https://doi.org/10.3390/sym14102209 - 20 Oct 2022
Cited by 2 | Viewed by 2154
Abstract
In this paper, superelastic (SE) NiTi wire is used to fabricate axially symmetric wire mesh dampers (WMDs) with the expectation of a higher damping capacity. However, the phase transformation damping of the NiTi WMD could be suppressed by the cold-work-induced dislocation. Therefore, the [...] Read more.
In this paper, superelastic (SE) NiTi wire is used to fabricate axially symmetric wire mesh dampers (WMDs) with the expectation of a higher damping capacity. However, the phase transformation damping of the NiTi WMD could be suppressed by the cold-work-induced dislocation. Therefore, the NiTi WMDs were heat-treated and then tested by a hydraulic universal testing machine. The NiTi WMD is found to achieve higher damping capacity when heat-treated at 200 °C. However, the WMD heat-treated at 250 °C suffers from a sharp decline in the loss factor in exchange for an improvement in the stiffness. The sine sweep test was then conducted to examine the dependency of the WMD’s vibration isolation performance upon the heat treatment temperature and the excitation acceleration. The NiTi WMD outperforms the 304 stainless steel (SS 304) WMD in damping capacity only when the excitation acceleration magnitude is less than 1.5 g. The stiffness of NiTi WMD can be improved without significantly compromising its damping capacity by heat treatment at 200 °C for 30 min. The present work carries out comprehensive measurements of the NiTi WMD’s response to dynamic mechanical test and sine sweep test and addresses how heat treatment influences the stiffness and damping capacity of the SE NiTi WMD. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 23285 KiB  
Article
Wire Mesh Dampers for Semi-Floating Ring Bearings in Automotive Turbochargers: Measurements of Structural Stiffness and Damping Parameters
by Keun Ryu and Howon Yi
Energies 2018, 11(4), 812; https://doi.org/10.3390/en11040812 - 1 Apr 2018
Cited by 13 | Viewed by 10715
Abstract
The current work introduces a new semi-floating ring bearing (SFRB) system developed for improving the rotordynamic and vibration performance of automotive turbochargers (TCs) at extreme operation conditions, such as high temperature, severe external force excitation, and large rotor imbalance. The new bearing design [...] Read more.
The current work introduces a new semi-floating ring bearing (SFRB) system developed for improving the rotordynamic and vibration performance of automotive turbochargers (TCs) at extreme operation conditions, such as high temperature, severe external force excitation, and large rotor imbalance. The new bearing design replaces outer oil films, i.e., squeeze film dampers (SFDs), in TC SFRBs with wire mesh dampers (WMDs). This SFRB configuration integrating WMDs aims to implement reliable mechanical components, as an inexpensive and simple alternative to SFDs, with consistent and superior damping capability, as well as predictable forced performance. Since WMDs are in series with the inner oil films of SFRBs, experimentally determined force coefficients of WMDs are of great importance in the design process of TC rotor-bearing systems (RBSs). Presently, the measurements of applied static load and ensuing deflection determine the structural stiffnesses of the WMDs. The WMD damping parameters, including dissipated energy, loss factor, and dry friction coefficient, are estimated from the area of the distinctive local hysteresis loop of the load versus WMD displacement data recorded during consecutive loading-unloading cycles as a function of applied preload with a constant amplitude of motion. The changes in WMD loss factor and dry friction coefficient due to increases in preload are more significant for the WMDs with lower density. The present work shows, to date, the most comprehensive measurements of static load characteristics on the WMDs for application into small automotive TCs. More importantly, the extensive test measurements of WMD deflection versus increasing static loads will aid to anchor predictions of future computation model. Full article
Show Figures

Figure 1

Back to TopTop