Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = wire bondless

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5494 KiB  
Article
A Newly Designed Double-Sided Cooling Wire-Bondless Power Module with Silicon Carbide MOSFETs and Ultra-Low Stray Inductance
by Xiaoyun Rong, Ruizhu Wu and Phil Mawby
Electronics 2025, 14(8), 1520; https://doi.org/10.3390/electronics14081520 - 9 Apr 2025
Viewed by 1024
Abstract
This paper presents the design and characterisation of a novel double-sided cooling, wire-bondless half-bridge power module incorporating silver sintering technology and silicon carbide MOSFETs. Initially, the module was meticulously designed, optimised, and simulated using Ansys (Electronics Desktop 2021 R1) Q3D and Icepak to [...] Read more.
This paper presents the design and characterisation of a novel double-sided cooling, wire-bondless half-bridge power module incorporating silver sintering technology and silicon carbide MOSFETs. Initially, the module was meticulously designed, optimised, and simulated using Ansys (Electronics Desktop 2021 R1) Q3D and Icepak to assess its stray parameters and thermal performance, respectively. The module has a low simulated stray inductance of 4.7 nH, which would be even lower in a multi-chip version of the design. Additionally, the thermal performance of the double-sided power module is compared with the single-sided version, showing a 30 °C reduction in junction temperature. Following the design work, a double-sided cooled half-bridge module was successfully fabricated, which underwent double pulse analysis and single-phase inductive load testing. Die attachment within the module employs nanosilver paste, with the flexibility to adjust the length of the copper connector to meet diverse requirements. The design exhibits remarkable compactness, and comprehensive electrical testing affirms its suitability for practical applications. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

13 pages, 4283 KiB  
Article
Sinterconnects: All-Copper Top-Side Interconnects Based on Copper Sinter Paste for Power Module Packaging
by Ali Roshanghias, Perla Malago, Jaroslaw Kaczynski, Timothy Polom, Jochen Bardong, Dominik Holzmann, Muhammad-Hassan Malik, Michael Ortner, Christina Hirschl and Alfred Binder
Energies 2021, 14(8), 2176; https://doi.org/10.3390/en14082176 - 13 Apr 2021
Cited by 9 | Viewed by 6116
Abstract
Copper sinter paste has been recently established as a robust die-attach material for high -power electronic packaging. This paper proposes and studies the implementation of copper sinter paste materials to create top-side interconnects, which can substitute wire bonds in power packages. Here, copper [...] Read more.
Copper sinter paste has been recently established as a robust die-attach material for high -power electronic packaging. This paper proposes and studies the implementation of copper sinter paste materials to create top-side interconnects, which can substitute wire bonds in power packages. Here, copper sinter paste was exploited as a fully printed interconnect and, additionally, as a copper clip-attach. The electrical and thermal performances of the copper-sinter paste interconnections (“sinterconnects”) were compared to a system with wire bonds. The results indicate comparable characteristics of the sinterconnect structures to the wire-bonded ones. Moreover, the performance of copper sinterconnects in a power module was further quantified at higher load currents via finite element analysis. It was identified that the full-area thermal and electrical contact facilitated by the planar sinterconnects can reduce ohmic losses and enhance the thermal management of the power packages. Full article
Show Figures

Figure 1

30 pages, 7760 KiB  
Review
High Performance Silicon Carbide Power Packaging—Past Trends, Present Practices, and Future Directions
by Sayan Seal and Homer Alan Mantooth
Energies 2017, 10(3), 341; https://doi.org/10.3390/en10030341 - 10 Mar 2017
Cited by 88 | Viewed by 16660
Abstract
This paper presents a vision for the future of 3D packaging and integration of silicon carbide (SiC) power modules. Several major achievements and novel architectures in SiC modules from the past and present have been highlighted. Having considered these advancements, the major technology [...] Read more.
This paper presents a vision for the future of 3D packaging and integration of silicon carbide (SiC) power modules. Several major achievements and novel architectures in SiC modules from the past and present have been highlighted. Having considered these advancements, the major technology barriers preventing SiC power devices from performing to their fullest ability were identified. 3D wire bondless approaches adopted for enhancing the performance of silicon power modules were surveyed, and their merits were assessed to serve as a vision for the future of SiC power packaging. Current efforts pursuing 3D wire bondless SiC power modules were described, and the concept for a novel SiC power module was discussed. Full article
(This article belongs to the Special Issue Semiconductor Power Devices)
Show Figures

Figure 1

Back to TopTop