Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = wing-box internal assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 8851 KB  
Article
Design, Manufacturing and Experimental Validation of an Integrated Wing Ice Protection System in a Hybrid Laminar Flow Control Leading Edge Demonstrator
by Ionut Brinza, Teodor Lucian Grigorie and Grigore Cican
Appl. Sci. 2026, 16(3), 1347; https://doi.org/10.3390/app16031347 - 28 Jan 2026
Viewed by 155
Abstract
This paper presents the design, manufacturing, instrumentation and validation by tests (ground and icing wind tunnel) of a full-scale Hybrid Laminar Flow Control (HLFC) leading-edge demonstrator based on Airbus A330 outer wing plan-form. The Ground-Based Demonstrator (GBD) was developed to reproduce a full-scale, [...] Read more.
This paper presents the design, manufacturing, instrumentation and validation by tests (ground and icing wind tunnel) of a full-scale Hybrid Laminar Flow Control (HLFC) leading-edge demonstrator based on Airbus A330 outer wing plan-form. The Ground-Based Demonstrator (GBD) was developed to reproduce a full-scale, realistic wing section integrating into the leading-edge three key systems: micro-perforated skin for the hybrid laminar flow control suction system (HLFC), the hot-air Wing Ice Protection System (WIPS) and a folding “bull nose” Krueger high-lift device. The demonstrator combines a superplastic-formed and diffusion-bonded (SPF/DB) perforated titanium skin mounted on aluminum ribs jointed with a carbon-fiber-reinforced polymer (CFRP) wing box. Titanium internal ducts were designed to ensure uniform hot-air distribution and structural compatibility with composite components. Manufacturing employed advanced aeronautical processes and precision assembly under INCAS coordination. Ground tests were performed using a dedicated hot-air and vacuum rig delivering up to 200 °C and 1.6 bar, thermocouples and pressure sensors. The results confirmed uniform heating (±2 °C deviation) and stable operation of the WIPS without structural distortion. Relevant tests were performed in the CIRA Icing Wind Tunnel facility, verifying the anti-ice protection system and Krueger device. The successful design, fabrication, testing and validation of this multifunctional leading edge—featuring integrated HLFC, WIPS and Krueger systems—demonstrates the readiness of the concept for subsequent aerodynamic testing. Full article
26 pages, 10016 KB  
Article
Robot Path Planning Based on Improved PRM for Wing-Box Internal Assembly
by Jiefeng Jiang, Yong You, Youtao Shao, Yunbo Bi and Jingjing You
Machines 2025, 13(10), 952; https://doi.org/10.3390/machines13100952 - 16 Oct 2025
Viewed by 784
Abstract
Currently, fastener installation within the narrow, confined space of a wing box must be performed manually, as existing robotic systems are unable to adequately meet the internal assembly requirements. To address this problem, a new robot with one prismatic and five revolute joints [...] Read more.
Currently, fastener installation within the narrow, confined space of a wing box must be performed manually, as existing robotic systems are unable to adequately meet the internal assembly requirements. To address this problem, a new robot with one prismatic and five revolute joints (1P5R) has been developed for entering and operating inside the wing box. Firstly, the mechanical structure and control system of the robot were designed and implemented. Then, an improved Probabilistic Roadmap (PRM) method was developed to enable rapid and smooth path planning, mainly depending on optimization of sampling strategy based on Halton sequence, an elliptical-region-based redundant point optimization strategy using control points, improving roadmap construction, and path smoothing based on B-spline curves. Finally, obstacle–avoidance path planning based on the improved PRM was simulated using the MoveIt platform, corresponding robotic motion experiments were conducted, and the improved PRM was validated. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

15 pages, 4218 KB  
Article
Kinematic Modeling and Simulation of a New Robot for Wingbox Internal Fastening Application
by Jiefeng Jiang, Jingjing You and Yunbo Bi
Machines 2023, 11(7), 753; https://doi.org/10.3390/machines11070753 - 18 Jul 2023
Cited by 7 | Viewed by 2243
Abstract
At present, the fastener installation in a wingbox facing a narrow space must be performed manually. Using a robot is an appropriate solution for automatic assembly. However, the existing robots cannot meet the internal fastening requirements. A new robot with a prismatic joint [...] Read more.
At present, the fastener installation in a wingbox facing a narrow space must be performed manually. Using a robot is an appropriate solution for automatic assembly. However, the existing robots cannot meet the internal fastening requirements. A new robot with a prismatic joint and four revolute joints (1P4R) was developed to perform the positioning and operation in the wingbox. A compact arm link was designed, and mechanical frame structures were set up. The control system was also set up for the robot’s motion. Then, the forward kinematic model was carried out with the matrix transformation method, and in the analysis the workspace entirely covered the wingbox. The inverse kinematic model was established using the geometric method, and through calculation and simulation, the inverse kinematic equations were verified and refined. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

Back to TopTop