Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = western red cedar (Thuja plicata)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2167 KiB  
Article
Investigating the Impact of Various Growing Media on the Expansion of Green Wall Plant Coverage with Image Analysis
by Omer Hulusi Dede and Hasan Ozer
Horticulturae 2024, 10(6), 654; https://doi.org/10.3390/horticulturae10060654 - 19 Jun 2024
Viewed by 1669
Abstract
Green walls are seen as an important architectural element in the design of sustainable cities, helping to make cities ecologically rich, green, and healthy places to live. The use of green walls, which have seen a wide range of applications worldwide, is supported [...] Read more.
Green walls are seen as an important architectural element in the design of sustainable cities, helping to make cities ecologically rich, green, and healthy places to live. The use of green walls, which have seen a wide range of applications worldwide, is supported mainly because of their potential in combating climate change, and international standards are being developed for the design, implementation, and monitoring of green wall projects. In this study, the effects of different growing media used in green wall systems on plant area and the increase in green wall performance were evaluated using an indirect monitoring technique. Peat, hazelnut husks, rice hulls and perlite were mixed in different proportions to produce the growing media, and their physical and chemical properties were determined. Western red cedar (Thuja plicata) and boxwood (Buxus sempervirens L.) were used for planting the green wall. To measure the growth of the green wall and the planting area, images were taken and examined after planting and at the end of the growing period. According to the findings of this study, we found that growing media with a high water holding capacity and high organic matter content were more successful in terms of increasing plant area and green wall performance. However, factors such as pH and phosphorus were found to have negative effects on plant growth. In addition, it was determined that the physical and chemical properties of the growing media used in green wall systems are important for the plant area in green wall systems and that a balanced optimization of these properties increases the efficiency of green walls. The results obtained in this study show that the use of indirect monitoring techniques is a fast and effective method for monitoring the development of green wall systems. The appropriate use of this technique could be an effective tool for the standardization of installation and could contribute efficiently to the maintenance of green wall systems. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

16 pages, 1736 KiB  
Article
A Comparison of the Chronologies of Introduced versus Native Coniferous Tree Species Growing in Northwestern Poland during the Period of Global Warming
by Anna Cedro and Grzegorz Nowak
Sustainability 2024, 16(5), 2215; https://doi.org/10.3390/su16052215 - 6 Mar 2024
Cited by 3 | Viewed by 1551
Abstract
The ongoing climatic changes are causing the extinction of numerous species or their withdrawal from previously occupied areas. The environmental and economic significance of introduced species may increase. The aim of the present study was to examine the rate of growth of coniferous [...] Read more.
The ongoing climatic changes are causing the extinction of numerous species or their withdrawal from previously occupied areas. The environmental and economic significance of introduced species may increase. The aim of the present study was to examine the rate of growth of coniferous species growing in northwestern Poland and to analyze the tree ring width–climate relationships. Six tree species were selected for this study. Two of these species have natural occurrences in Poland: Pinus sylvestris and Larix decidua. The remaining four species were introduced from North America: Chamaecyparis lawsoniana, Thuja plicata, Pseudotsuga menziesii, and Pinus strobus. Samples were collected from 131 trees using a Pressler borer at 1.3 m above ground. Tree ring widths were measured down to 0.01 mm. Climatic data were retrieved from a weather station located 23 km from the study plot. The average tree ring width reaches the lowest value for the P. sylvestris chronology (1.62 mm/year) and for P. strobus (1.69 mm/year), and the highest value is reached for T. plicata (2.80 mm/year) and P. menziesii (2.56 mm/year). The analysis of weather conditions in the designated pointer years and the response function analysis indicate that winter and early spring air temperature is the factor responsible for the formation of wide tree rings in the following species studied: P. sylvestris, C. lawsoniana, P. menziesii, and T. plicata. For L. decidua and P. strobus, the climate–growth relationships are different: weather conditions in the previous growth year are important, and it is the weather in the late spring and summer months. Two of the investigated introduced species (T. plicata and P. menziesii) are characterized by very good acclimatization and are best adapted to the new habitat during the current climate changes. These tree species can constitute a basis for replacing native species, which, due to increasingly severe droughts and higher temperatures, are doing less and less well in their current habitats. Foresters wanting to conduct sustainable forest management will look for replacement species that are well adapted to new habitat conditions in order to maintain the continuity of forest cover. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

11 pages, 328 KiB  
Article
The Antimicrobial Properties of Cedar Leaf (Thuja plicata) Oil; A Safe and Efficient Decontamination Agent for Buildings
by James Hudson, Michael Kuo and Selvarani Vimalanathan
Int. J. Environ. Res. Public Health 2011, 8(12), 4477-4487; https://doi.org/10.3390/ijerph8124477 - 30 Nov 2011
Cited by 31 | Viewed by 10477
Abstract
Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and [...] Read more.
Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings. Full article
Show Figures

Figure 1

Back to TopTop