Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = wax formwork technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12341 KB  
Review
Toolpath-Driven Surface Articulation for Wax Formwork Technology in the Production of Thin-Shell, Robotic, CO2-Reduced Shotcrete Elements
by Sven Jonischkies, Jeldrik Mainka, Harald Kloft, Bhavatarini Kumaravel, Asbjørn Søndergaard, Falk Martin and Norman Hack
Buildings 2026, 16(2), 257; https://doi.org/10.3390/buildings16020257 - 7 Jan 2026
Viewed by 6
Abstract
This study introduces a digital fabrication process for producing recyclable, closed-loop wax formwork for architectural concrete applications with visually rich surface articulation while drastically reducing formwork milling time. As such, this paper presents (a) a circular large-scale production method for wax blocks via [...] Read more.
This study introduces a digital fabrication process for producing recyclable, closed-loop wax formwork for architectural concrete applications with visually rich surface articulation while drastically reducing formwork milling time. As such, this paper presents (a) a circular large-scale production method for wax blocks via a single casting process; (b) four machine-time-optimized surface articulation strategies through CNC toolpath-driven design; (c) the investigation of different coating systems to improve architectural concrete surface quality and to ease demolding; and (d) the integration of robotic concrete shotcreting using a low-CO2 fine-grain concrete. For the first time, wax formwork technology, characterized by its waste-free approach, has been combined with robotic shotcreting in a digital and automated workflow to fabricate fiber-reinforced, geometrically complex thin-shell concrete elements with distinct surface articulations. To evaluate the process, a series of four thin-shell concrete elements was produced, employing four distinct parametric toolpath-driven designs: linear surface articulation, crossed surface articulation, topology-adapted curve flow surface articulation, and robotic drill topology-adapted surface articulation. Results revealed a possible reduction in milling time of between 77% and 94% compared to traditional milling methods. The optimized toolpaths and design-driven milling strategies achieved a high degree of visual richness, showcasing the potential of this integrated approach for the production of high-quality architectural concrete elements. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

Back to TopTop