Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = voltage deviation index (VDI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5776 KB  
Article
Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Algorithm
by Nasreddine Belbachir, Mohamed Zellagui, Samir Settoul, Claude Ziad El-Bayeh and Ragab A. El-Sehiemy
Energies 2023, 16(4), 1595; https://doi.org/10.3390/en16041595 - 5 Feb 2023
Cited by 13 | Viewed by 2527
Abstract
In the last few years, the integration of renewable distributed generation (RDG) in the electrical distribution network (EDN) has become a favorable solution that guarantees and keeps a satisfying balance between electrical production and consumption of energy. In this work, various metaheuristic algorithms [...] Read more.
In the last few years, the integration of renewable distributed generation (RDG) in the electrical distribution network (EDN) has become a favorable solution that guarantees and keeps a satisfying balance between electrical production and consumption of energy. In this work, various metaheuristic algorithms were implemented to perform the validation of their efficiency in delivering the optimal allocation of both RDGs based on multiple photovoltaic distributed generation (PVDG) and wind turbine distributed generation (WTDG) to the EDN while considering the uncertainties of their electrical energy output as well as the load demand’s variation during all the year’s seasons. The convergence characteristics and the results reveal that the marine predator algorithm was effectively the quickest and best technique to attain the best solutions after a small number of iterations compared to the rest of the utilized algorithms, including particle swarm optimization, the whale optimization algorithm, moth flame optimizer algorithms, and the slime mold algorithm. Meanwhile, as an example, the marine predator algorithm minimized the seasonal active losses down to 56.56% and 56.09% for both applied networks of IEEE 33 and 69-bus, respectively. To reach those results, a multi-objective function (MOF) was developed to simultaneously minimize the technical indices of the total active power loss index (APLI) and reactive power loss index (RPLI), voltage deviation index (VDI), operating time index (OTI), and coordination time interval index (CTII) of overcurrent relay in the test system EDNs, in order to approach the practical case, in which there are too many parameters to be optimized, considering different constraints, during the uncertain time and variable data of load and energy production. Full article
Show Figures

Figure 1

28 pages, 2353 KB  
Article
Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique
by Chandrasekaran Venkatesan, Raju Kannadasan, Dhanasekar Ravikumar, Vijayaraja Loganathan, Mohammed H. Alsharif, Daeyong Choi, Junhee Hong and Zong Woo Geem
Sustainability 2021, 13(24), 13709; https://doi.org/10.3390/su132413709 - 12 Dec 2021
Cited by 13 | Viewed by 2794
Abstract
Integration of Distributed generations (DGs) and capacitor banks (CBs) in distribution systems (DS) have the potential to enhance the system’s overall capabilities. This work demonstrates the application of a hybrid optimization technique the applies an available renewable energy potential (AREP)-based, hybrid-enhanced grey wolf [...] Read more.
Integration of Distributed generations (DGs) and capacitor banks (CBs) in distribution systems (DS) have the potential to enhance the system’s overall capabilities. This work demonstrates the application of a hybrid optimization technique the applies an available renewable energy potential (AREP)-based, hybrid-enhanced grey wolf optimizer–particle swarm optimization (AREP-EGWO-PSO) algorithm for the optimum location and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves, and PSO is a swarm-based metaheuristic optimization algorithm. Hybridization of both algorithms finds the optimal solution to a problem through the movement of the particles. Using this hybrid method, multi-criterion solutions are obtained, such as technical, economic, and environmental, and these are enriched using multi-objective functions (MOF), namely minimizing active power losses, voltage deviation, the total cost of electrical energy, total emissions from generation sources and enhancing the voltage stability index (VSI). Five different operational cases were adapted to validate the efficacy of the proposed scheme and were performed on two standard distribution systems, namely, IEEE 33- and 69-bus radial distribution systems (RDSs). Notably, the proposed AREP-EGWO-PSO algorithm compared the AREP at the candidate locations and re-allocated the DGs with optimal re-sizing when the EGWO-PSO algorithm failed to meet the AREP constraints. Further, the simulated results were compared with existing optimization algorithms considered in recent studies. The obtained results and analysis show that the proposed AREP-EGWO-PSO re-allocates the DGs effectively and optimally, and that these objective functions offer better results, almost similar to EGWO-PSO results, but more significant than other existing optimization techniques. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

34 pages, 6751 KB  
Article
A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems
by Chandrasekaran Venkatesan, Raju Kannadasan, Mohammed H. Alsharif, Mun-Kyeom Kim and Jamel Nebhen
Sustainability 2021, 13(6), 3308; https://doi.org/10.3390/su13063308 - 17 Mar 2021
Cited by 86 | Viewed by 3717
Abstract
Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend [...] Read more.
Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values. Full article
Show Figures

Figure 1

Back to TopTop