Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = video-based online fatigue detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 757 KiB  
Article
An Explainable Student Fatigue Monitoring Module with Joint Facial Representation
by Xiaomian Li, Jiaqin Lin, Zhiqiang Tian and Yuping Lin
Sensors 2023, 23(7), 3602; https://doi.org/10.3390/s23073602 - 30 Mar 2023
Cited by 1 | Viewed by 2333
Abstract
Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance [...] Read more.
Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students’ fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial–temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student’s face and generates spatial–temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student’s status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training–testing setting. The results were significant for real-time monitoring of students’ fatigue states during online classes and could also provide practical strategies for in-person education. Full article
(This article belongs to the Special Issue Machine Learning Based 2D/3D Sensors Data Understanding and Analysis)
Show Figures

Figure 1

30 pages, 5249 KiB  
Article
Detection of Physical Strain and Fatigue in Industrial Environments Using Visual and Non-Visual Low-Cost Sensors
by Konstantinos Papoutsakis, George Papadopoulos, Michail Maniadakis, Thodoris Papadopoulos, Manolis Lourakis, Maria Pateraki and Iraklis Varlamis
Technologies 2022, 10(2), 42; https://doi.org/10.3390/technologies10020042 - 16 Mar 2022
Cited by 17 | Viewed by 6893
Abstract
The detection and prevention of workers’ body straining postures and other stressing conditions within the work environment, supports establishing occupational safety and promoting well being and sustainability at work. Developed methods towards this aim typically rely on combining highly ergonomic workplaces and expensive [...] Read more.
The detection and prevention of workers’ body straining postures and other stressing conditions within the work environment, supports establishing occupational safety and promoting well being and sustainability at work. Developed methods towards this aim typically rely on combining highly ergonomic workplaces and expensive monitoring mechanisms including wearable devices. In this work, we demonstrate how the input from low-cost sensors, specifically, passive camera sensors installed in a real manufacturing workplace, and smartwatches used by the workers can provide useful feedback on the workers’ conditions and can yield key indicators for the prevention of work-related musculo-skeletal disorders (WMSD) and physical fatigue. To this end, we study the ability to assess the risk for physical strain of workers online during work activities based on the classification of ergonomically sub-optimal working postures using visual information, the correlation and fusion of these estimations with synchronous worker heart rate data, as well as the prediction of near-future heart rate using deep learning-based techniques. Moreover, a new multi-modal dataset of video and heart rate data captured in a real manufacturing workplace during car door assembly activities is introduced. The experimental results show the efficiency of the proposed approach that exceeds 70% of classification rate based on the F1 score measure using a set of over 300 annotated video clips of real line workers during work activities. In addition a time lagging correlation between the estimated ergonomic risks for physical strain and high heart rate was assessed using a larger dataset of synchronous visual and heart rate data sequences. The statistical analysis revealed that imposing increased strain to body parts will results in an increase to the heart rate after 100–120 s. This finding is used to improve the short term forecasting of worker’s cardiovascular activity for the next 10 to 30 s by fusing the heart rate data with the estimated ergonomic risks for physical strain and ultimately to train better predictive models for worker fatigue. Full article
(This article belongs to the Collection Selected Papers from the PETRA Conference Series)
Show Figures

Figure 1

Back to TopTop