Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = van der Waals interaction and Lennard–Jones potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1723 KB  
Article
The Sticking of N2 on W(100) Surface: An Improvement in the Description of the Adsorption Dynamics Further Reconciling Theory and Experiment
by Maria Rutigliano and Fernando Pirani
Molecules 2023, 28(22), 7546; https://doi.org/10.3390/molecules28227546 - 11 Nov 2023
Cited by 4 | Viewed by 1802
Abstract
The adsorption of nitrogen molecules on a (100) tungsten surface has been studied using a new potential energy surface in which long-range interactions are suitably characterized and represented by the Improved Lennard–Jones function. The new potential energy surface is used to carry out [...] Read more.
The adsorption of nitrogen molecules on a (100) tungsten surface has been studied using a new potential energy surface in which long-range interactions are suitably characterized and represented by the Improved Lennard–Jones function. The new potential energy surface is used to carry out molecular dynamics simulations by adopting a semiclassical collisional method that explicitly includes the interaction with the surface phonons. The results of the sticking probability, evaluated as a function of the collision energy, are in good agreement with those obtained in the experiments and improve the already good comparison recently obtained with calculations performed using interactions from the Density Functional Theory method and corrected for long-range van der Waals contributions. The dependence of trapping probability on the surface temperature for a well-defined collision energy has also been investigated. Full article
Show Figures

Figure 1

7 pages, 818 KB  
Commentary
Matter-Aggregating Low-Dimensional Nanostructures at the Edge of the Classical vs. Quantum Realm
by Adam Gadomski and Natalia Kruszewska
Entropy 2023, 25(1), 1; https://doi.org/10.3390/e25010001 - 20 Dec 2022
Cited by 6 | Viewed by 2176
Abstract
This commentary tackles the subtle at-the-edge problem of passing locally by a mesoscopic matter-aggregating system from a classical stochastic to a quantum stochastic description. A d-dimensional entropy-productive aggregation of the matter is taken as the starting point. Then, a dimensional reduction towards [...] Read more.
This commentary tackles the subtle at-the-edge problem of passing locally by a mesoscopic matter-aggregating system from a classical stochastic to a quantum stochastic description. A d-dimensional entropy-productive aggregation of the matter is taken as the starting point. Then, a dimensional reduction towards a one-dimensional quantum-wire type matter-aggregation system is proposed, resulting in postponing surface-tension conditions for the effectively d = 1-dimensional quantum-wire type or nanorod-like cluster/polycrystal, which is qualitatively consistent with a physical-metallurgical (high-temperature) Louat’s grain growth model. A certain recuperative interplay based on maneuvering between subtle temperature rises applied to the system under study while maintaining its quantum character (the so-called Nelson’s quantum-stochastic procedure) within the limits of a vanishing Planck’s constant, involved in the diffusivity measure of the aggregation, is discussed. Certain applications towards the formation of d = 1-dimensional semiconductors and other nanostructures (possibly using soft materials or (bio)polymeric materials such as nanofibers) are envisioned. As a special example, one may propose a nanotechnological process which is termed the Van der Waals heteroepitaxy. The process itself contains the main quantum vs. classical crossover due to the involvement of weak repulsion (quantum) vs. attraction (treated classically) interactions, which are represented by a Lennard-Jones-type potential. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

15 pages, 1196 KB  
Article
Fullerene Derivatives (CN-[OH]β) and Single-Walled Carbon Nanotubes Modelled as Transporters for Doxorubicin Drug in Cancer Therapy
by Hakim Al Garalleh
Int. J. Mol. Sci. 2022, 23(17), 9646; https://doi.org/10.3390/ijms23179646 - 25 Aug 2022
Cited by 5 | Viewed by 2402
Abstract
Carbon nanomaterials have received increasing attention in drug-delivery applications because of their distinct properties and structures, including large surface areas, high conductivity, low solubility in aqueous media, unique chemical functionalities, and stability at the nano-scale size. Particularly, they have been used as nano-carriers [...] Read more.
Carbon nanomaterials have received increasing attention in drug-delivery applications because of their distinct properties and structures, including large surface areas, high conductivity, low solubility in aqueous media, unique chemical functionalities, and stability at the nano-scale size. Particularly, they have been used as nano-carriers and mediators for anticancer drugs such as Cisplatin, Camptothecin, and Doxorubicin. Cancer has become the most challenging disease because it requires sophisticated therapy, and it is classified as one of the top killers according to the World Health Organization records. The aim of the current work is to study and investigate the mechanism of combination between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives (CN-[OH]β) as mediators, and anticancer agents for photodynamic therapy directly to destroy the infected cells without damaging the normal ones. Here, we obtain a bio-medical model to determine the efficiency of the usefulness of Doxorubicin (DOX) as an antitumor agent conjugated with SWCNTs with variant radii r and fullerene derivative (CN-[OH]β). The two sub-models are obtained mathematically to evaluate the potential energy arising from the DOX–SWCNT and DOX-(CN-[OH]β) interactions. DOX modelled as two-connected spheres, small and large, each interacting with different SWCNTs (variant radii r) and fullerene derivatives CN-[OH]β, formed based on the number of carbon atoms (N) and the number of hydroxide molecules (OH) (β), respectively. Based on our obtained results, we find that the most favorable carbon nanomaterial is the SWCNT (r = 15.27 Å), followed by fullerene derivatives CN-(OH)22, CN-(OH)20, and CN-(OH)24, with minimum energies of −38.27, −33.72, −32.95, and −29.11 kcal/mol. Full article
(This article belongs to the Special Issue Advances in the Application of Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop