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Abstract: This commentary tackles the subtle at-the-edge problem of passing locally by a meso-
scopic matter-aggregating system from a classical stochastic to a quantum stochastic description. A
d-dimensional entropy-productive aggregation of the matter is taken as the starting point. Then, a
dimensional reduction towards a one-dimensional quantum-wire type matter-aggregation system is
proposed, resulting in postponing surface-tension conditions for the effectively d = 1-dimensional
quantum-wire type or nanorod-like cluster/polycrystal, which is qualitatively consistent with a
physical-metallurgical (high-temperature) Louat’s grain growth model. A certain recuperative inter-
play based on maneuvering between subtle temperature rises applied to the system under study while
maintaining its quantum character (the so-called Nelson’s quantum-stochastic procedure) within
the limits of a vanishing Planck’s constant, involved in the diffusivity measure of the aggregation,
is discussed. Certain applications towards the formation of d = 1-dimensional semiconductors and
other nanostructures (possibly using soft materials or (bio)polymeric materials such as nanofibers)
are envisioned. As a special example, one may propose a nanotechnological process which is termed
the Van der Waals heteroepitaxy. The process itself contains the main quantum vs. classical crossover
due to the involvement of weak repulsion (quantum) vs. attraction (treated classically) interactions,
which are represented by a Lennard-Jones-type potential.

Keywords: nonequilibrium mesoscopic thermodynamics; nanostructure formation; reduction of
system’s dimensionality; entropy production; quantum vs. classical; weak Van der Waals interaction;
recuperation; stochastic quantization; Fokker–Planck type equation

1. Introduction

It is commonly accepted that physical systems can uniquely express their matter ag-
gregation properties if they are formed distinctly either within low-temperature (quantum
prone; towards crystal formation) or within high-temperature (classically meant; towards
amorphization) limits. What appears at the edge, just between quantum and classical mani-
festations, is often shifted to an exploration of the respective phase transitions the systems
may undergo. For example, if the first-order phase transition scenario occurring between
the corresponding thermodynamic equilibria comes into play, then a clear distinguishment
and the resulting coexistence of the emerging phases applies, for example, as in the case of
a triphasic water system or biphasic (ferro)magnetic/electric system (second-order phase
transition), to mention but two.

In what follows we wish to exploit a certain non-phase-transitive way of creating a
matter-aggregation output, the parts of which, while slightly out of equilibrium, benefit
from a type of recuperation of its apparently contradictory properties. This refers to being
at the edge of the fundamental quantum-classical thermal passage(s), meaning that a
subtle (non-drastic) temperature drop/rise can eventually cooperate with the onset of the
corresponding quantum behavior [1]. The overall scenario undergoes a type of recuperation
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process in which a subtle local rise in temperature in a neighboring part of a material piece
causes its constituents, such as atoms or molecules, to pass over a diffuse interface or a
boundary to its low-temperature vicinal counterpart (see, Figure 1) without experiencing
a pressure difference between these parts but rather because of being trapped by the
low-temperature part due to a local bond creation or similar. Such a self-organizational
effect is especially foreseeable if there is a certain loss in surface-tension influence caused
by a reduction in dimensionality of the said material’s piece, presumably to an effective
space dimension approaching one, as in the case of quantum wires and/or nanorods, or
(bio)polymeric nanofibers [2] and similar materials.
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and semiconductor technology, but also that concerning modern polymer- metal- or 
composite technologies, contains a good number of such examples (See [1–3]). 

In what follows, we would like to briefly discuss a mesoscopic, entropy-productive 
material formation based on an evolution of grain containing systems, wherein the grain’s 
volume is a stochastic variable (x). The material system addressed is supposed to sit close 
to the local thermodynamic equilibrium, eventually escaping from it for another one. The 
escape is assumed because a local thermal agitation applies to the system, let us say, by a 
local temperature gradient. 

Next, when realizing how such material evolutions proceed, we wish to confine 
ourselves to a practically relevant circumstance (towards quantum wires or low-
dimensional nano-object formations) of effectively reaching the space dimension d = 1. As 
a consequence, our system is assumed to be systematically devoid of the role customarily 
played by surface tension. However, to keep the needle-like system as a whole, we foresee 
that the Van der Waals attraction ought to be at play while creating the structure. On the 
other hand, it qualitatively appears we would confine it to a line (or a chain) of a bubble-
containing system or apply a similar procedure [4]. 

At the same time, we assume that the system, still possessing some remnant surface 
tension contribution due to being not ideally one-dimensional in terms of geometry, 
would lose this surface tension if moved onto a higher temperature (amorphization or 
disorder) level [5]. In this way, a one-dimensional diffusion equation for the evolution in 
the x-space is obtained [6]. 

Further on, it is allowed that the respective high-temperature limit permits the 
quantum effects to work locally, as in chemical bond creation-annihilation events. A 
stochastic quantization procedure applied to diffusion-type systems, first proposed by 
Nelson [7], and elaborated later by Ruggiero and Zanetti [8] in terms of a quantum-

Figure 1. Schematic two-dimensional cross-section of a two-state slab-like nanosystem differing
locally with temperature. There is a possibility that one of the atoms or molecules from the hot region
(marked by red) will gain a “quantum” of thermal energy, E, to travel over the diffuse boundary into
a colder region of greater structural order. It thereby loses this additional energy by, for example,
bond creation, a quantum-mechanical effect, thereby causing orderly growth of the colder grain.

Materials science and condensed-matter literature, especially that pertinent to nano-
and semiconductor technology, but also that concerning modern polymer- metal- or com-
posite technologies, contains a good number of such examples (See [1–3]).

In what follows, we would like to briefly discuss a mesoscopic, entropy-productive
material formation based on an evolution of grain containing systems, wherein the grain’s
volume is a stochastic variable (x). The material system addressed is supposed to sit close
to the local thermodynamic equilibrium, eventually escaping from it for another one. The
escape is assumed because a local thermal agitation applies to the system, let us say, by a
local temperature gradient.

Next, when realizing how such material evolutions proceed, we wish to confine our-
selves to a practically relevant circumstance (towards quantum wires or low-dimensional
nano-object formations) of effectively reaching the space dimension d = 1. As a consequence,
our system is assumed to be systematically devoid of the role customarily played by surface
tension. However, to keep the needle-like system as a whole, we foresee that the Van der
Waals attraction ought to be at play while creating the structure. On the other hand, it
qualitatively appears we would confine it to a line (or a chain) of a bubble-containing
system or apply a similar procedure [4].

At the same time, we assume that the system, still possessing some remnant surface
tension contribution due to being not ideally one-dimensional in terms of geometry, would
lose this surface tension if moved onto a higher temperature (amorphization or disorder)
level [5]. In this way, a one-dimensional diffusion equation for the evolution in the x-space
is obtained [6].
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Further on, it is allowed that the respective high-temperature limit permits the quan-
tum effects to work locally, as in chemical bond creation-annihilation events. A stochastic
quantization procedure applied to diffusion-type systems, first proposed by Nelson [7],
and elaborated later by Ruggiero and Zanetti [8] in terms of a quantum-classical crossover
in critical dynamics, allows for converting the diffusion equation (in general, equations of
the Fokker–Planck or Smoluchowski types) to a Schrödinger’s equation (in the imaginary
time domain). This is plausible if the diffusion coefficient is proportional to Planck’s con-
stant h [7,8]. With the limit of h tending to zero, i.e., while escaping from the respective
quantum realm, the material evolution in x-space will approach a low-valued ‘subdiffusive’
(and, non-quantum) pathway, nearly causing the atoms or molecules entering any of the
low-temperature adjacent grains or clusters to “arrest”. Of course, such a rationale is
proposed when based on a mesoscopic nonequilibrium-thermodynamic, grain-containing
system [5,9], but its realization can be performed with the incorporation of local quantum-
classical effects, which in general, leads to the recuperation of the atoms’ (or, molecules’)
thermal energies. These are increased in one grain/cluster and then used to create a
polycrystalline order when the thermally excited atom or molecule becomes a part of an
adjacent ‘cool grain’ (cf. Figure 1). We are of the opinion that such atoms’ (or, molecules’)
co-optation mechanism is not frequently taken into account in modern contemporary
nanotechnologies [1–3].

The article is structured as follows. In Section 2, a mesoscopic model for a material
formation in nonequilibrium-thermodynamic conditions is described, and in Section 3, the
classical-quantum limit/crossover of the d = 1-dimensional clusters formation is revealed.
Section 4 consists of a related discussion and a summary.

2. Mesoscopic Model for Material Formation in Nonequilibrium Thermodynamic Conditions

Here below, let us sketch in brief a model of the normal grain growth that is based on
a decomposition of the matter flux J(x,t) into two main parts [9].

J(x, t) = −σxα−1 f (x, t)− Dxα ∂ f (x, t)
∂x

. (1)

Namely, a surface tension involving the non-gradient part and its counterpart with a
Fickian-type gradient. Note that σ and D are surface tension and diffusion reference
parameters, respectively. The function f (x,t) stands for the probability density of finding
the respective grain of size x at time t. The exponent α reads:

α = 1− 1
d

, (2)

where d is the Euclidean space dimension (d = 1, 2, 3 . . . ). Bear in mind that if d = 1, then
α = 0, and in Equation (1), the Fickian-type term becomes classically defined with a constant
D. By virtue of this, the factor preceding the gradient of f (x,t) becomes x-independent.

Let us assume that, as in [4,5,9], the system is conservative, which means that

∂ f (x, t)
∂t

+
∂J(x, t)

∂x
= 0 . (3)

To complete the problem presented in Equations (1)–(3), one has to prescribe the initial and
boundary conditions (IBCs). The so-called delta-Dirac and absorbing IBCs can be found
elsewhere [9].

This phenomenological model, most likely first invented by Louat [6], for some
physical-metallurgical grain-containing system evolving diffusively in the so-called normal
grain-growth conditions (see the mention of IBCs above) is an entropy-production model.
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According to [5,9], it can be presented (compare with Equation (1)) in dimension d. In terms
of the entropy production, the matter flux is given by [9]

J(x, t) = −b(x) f (x, t)
∂ϕ(x)

∂x
− Dxα ∂ f (x, t)

∂x
, (4)

In this case, the only difference, when comparing Equations (1) and (4) is that there appears
a free energy gradient ∂ϕ(x)

∂x , which implies that the coefficient (mobility) b(x) = 1
T f (x,t) L(x),

with L(x), an Onsager’s coefficient [9]. The most important physical fact here appears to be
that b(x) is inversely proportional to the local temperature T (slightly changing around its
mean value, pointing to the content of Figure 1); thus, for the high-temperature limit, the
non-Fickian term, represented by the free energy gradient ( ∂ϕ(x)

∂x ), vanishes irrespective of
the role played by dimension d. Following the fact that the Van der Waals forces between
atoms and molecules can be modeled as fluctuating electric dipole oscillators, as described
by the classical harmonic oscillator equations [8], which involve masses coupled by springs,
we can take the free energy gradient in the form of the spring force (− ∂ϕ(x)

∂x , which is of
the form −kx, with k being a constant). Based on this, we can deduce that the presented
model conforms to Van der Waals when k→ 0 , which is true for most of the materials
at high temperatures ( T → ∞ ). If ϕ represents the elastic energy of a 1D microslab, the
material spring constant involved in this kind of energy ought to attain a negligible value,
which is the situation of a system equipped with a set of weak bonds, as is expected to
occur in Van der Waals oxide heteroepitaxy [10,11]. As expected, the evolution of the grainy
(“granular”) matter in one-dimensional x-space becomes fully Fickian, as was shown in [5].
However, bear in mind that we claim that in the exemplary heteroepitaxy just invoked, an
effective one-dimensional diffusion component is the feeding mechanism for the formation
of needle-like domain-wise structures; see [11] and Figure 3 therein (cf., Figure 1). It is
based on the flux:

J(x, t) = −D
∂ f (x, t)

∂x
, (5)

where D = const, which is independent of the state variable x. Of course, the evolu-
tion/formation of the d = 1-material object remains conservative, according to Equation (3)
for α = 0, which is equivalent to d = 1, (cf. Equation (2)). This is very likely when the
formations of quantum wires during a molecular beam (hetero)epitaxy process, or simi-
larly, when by the same technology an emergence of nanorods becomes effective [1,2] or
some nanofibrils and their bundles appear as one-dimensional Van-der-Waals quantum
materials [3,12] (cf. Figure 2). The scientific interest is growing in the latter as the quantum
material’s specific d = 1-structural characteristics lead to highly anisotropic optical and
electrical properties, which is advantageous for many applications [12].
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Figure 2. One-dimensional growth of quantum wire on the NbCl4 example. This material has
strong covalent bonds in the x direction (in accordance with the direction of the atomic chain). The
remaining bonds are weaker, being of the Van-der-Waals type [12] (The horizontal x direction is taken
arbitrarily here).



Entropy 2023, 25, 1 5 of 7

To be specific, let us refer partly to the example(s) presented in [12], and visualized
in Figures 1 and 2. Thus, we may offer our physical scenario that reveals the recuperative
phenomenon of interest (cf. Figure 1). The phenomenon, actually a nanotechnological
process, is termed the Van der Waals (oxide) heteroepitaxy, as already mentioned above. It
relies on a controlled diffusion formation [10,11,13,14], which we simplify to the effective
one-dimensional process. For some obvious reasons, pointing to geometrical (V type
grooves) [13] and catalytical factors (CCl4 environment [14]) readily influencing the process,
making it one-dimensional, our model is capable of capturing the needle-like quantum-wire
involving formation. Based on Figure 1, one can assume that after the diffusion-controlled
deposition of atoms/molecules, two types of structural domains appear. The domain
emerging closer to the source of deposition can be recognized as a hot or disordered
domain, whereas the more distant domain is more ordered and can be viewed as the cold
one (cf. Figure 1). While the main atomic/molecular construction of the quantum wire
retains its elasticity, and non-affinity to the deposition (vicinal) surfaces, other atoms or
molecules of the construct are held to the “elastic skeleton”, and to themselves, by weak
Van der Waals forces. For them, the descriptive Lennard-Jones (L-J) potential includes its
repulsive character (quantum type, with Pauli principle involved); thus, it is proportional
to 1/r12, with r being a binary interaction distance, but it also contains the attractive term
(viewed classically as ∼1/r6), which is temperature dependent and assures the attraction
at longer distances. This L-J potential per se includes a quantum-classical paradigm, very
suitable for our viewpoint. In what follows, we offer our line of argumentation in this
respect while maneuvering the near distance r close to the L-J energy minimum.

3. Classical vs. Quantum Limit of the d = 1-Dimensional Cluster Formation

As we have already arrived at a one-dimensional Van-der-Waals type formation of ma-
terials in terms of appropriate space dimension reduction for and suitable high-temperature
application to the clustering system [5,6], we can also strive to achieve the formation quan-
tum. This can be formally achieved thanks to a quantization procedure first proposed
by Nelson in the 1960s [7]. In this procedure, a derivation of Schrödinger’s equation can
essentially be obtained from the Newton–Langevin type dynamics, with the incorporation
of Ornstein–Uhlenbeck noise, mimicking an impact of the external environment on the
system’s dynamics. It appears, for example in [13,14], that the selection of a nonreactive sub-
strate based on a mica-type catalyst and the incorporation of a suitable growth-amplifying
environment play exclusion (towards 1D) roles. From Nelson’s quantization procedure,
also thoroughly elaborated in [8], it turns out that the diffusion coefficient included in
Equation (5) obeys

D ∼ h (6)

if we make use of, as already introduced before, an effective analogy between the random
walk in the x-space of grain sizes (effective grain lengths; “needles”) and conventional
(for Brownian particles) coordinates on the straight line (d = 1) [15], (cf. the kinematics of
Markov process described in [7]) by means of Brownian motion of a particle which also
involves an inverse proportionality to the particle’s mass (m) [8], i.e., D ∼ 1/m. Of course,
the Planck’s constant, h, viewed in dimensions of action (formally, Joule times second) is
known as a very small quantity. It is also well-known that turning the evolving system to
the classical limit implies that

h→ 0 (7)

would mostly apply, which is surprisingly consistent with the similarity expressed by
Equation (6). It also refers to the fact that the diffusion of grain boundaries associated
with the recuperation events, though normal, becomes very small along the interdomain
(dividing, but fuzzy) surface (cf. Figure 1). Moreover, the negligible role played by the
surface tension in the 1D case is replaced in our argumentation by an effective involvement
of the attractive part of the weak Van der Waals interactions. The repulsive counterpart
of this interaction assures the atom-exclusion effect, which is well supported by the Pauli
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electron-orbitals exclusion principle. Both Equations (6) and (7) applied to the quantum-
classical crossover of the systems (Fokker–Planck type) dynamics [7,8,15] are going to
witness the physical fact the atoms or molecules (or similar) when migrating from the hot
grain to its subtly cooler adjacent counterpart (cf. Figure 1), will be capable of performing
there a very slow motion. This can be described as a quantum-diffusive (limited by bonding)
random walk [16] within the cooled grain/cluster or when trapped in a challenging time
domain within a soft granule [17]. A general discussion on classical-quantum crossover
can be found in [18].

4. Discussion and Summary

In this paper, we suggest that a mesoscopic nonequilibrium-thermodynamic sys-
tem, by its dimensionally-reduced evolution, is capable of absorbing a quantization pro-
cedure that makes the uncovered quantum-classical crossover dynamics effective and
fairly unambiguous. A certain relevant physical fact, pertinent to the realization of the
(quantization [7,8]) procedure, is that some additional (auxiliary) sub-procedure has to be
performed on the diffusion coefficient’s value and its connection with the Planck’s constant
(h) (cf. Equations (6) and (7)), and thus with the quantum world. This was proposed in
a similar vein and discussed some years ago for another low-dimensional biopolymer
system [19]. The exemplary nanotechnological process is termed the Van der Waals (oxide)
heteroepitaxy, resting essentially, in terms of our rationale, on a controlled fed-by-diffusion
formation which has been reduced to an effectively one-dimensional picture, in which
surface-tension effects have been virtually replaced by Van-der Waals interactions.

The elementary entropy change δS = − 1
T
∫

µ(x, t)δ f (x, t)dx, as provided by [9],
depends upon the chemical potential of the system µ(x,t), which in turn, has to depend upon
the (elementary) free system’s energy and a chemical affinity [20]. We believe that we have
to attribute δS as a useful cause of the recuperation of the warmer units (atoms, molecules,
hydrogen-bonding oligomers [21,22]) being absorbed by their adjacent cooler counterparts.
In this manner, an effective d = 1-structure can form, and repetitive realization of µ(x,t)
would rely on the above described recuperative units’ elementary exchange processes. The
chemical affinity, in turn, is likely realized by means of bonding, for example H-bonding,
as described in [23]. It can also challenge self-organizationally an affinity of the effectively
one-dimensional atomic (Ge) object to the substrate (Si) on which it is grown [24].
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