Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = urticating setae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7800 KB  
Article
Quantification of Urticating Setae of Oak Processionary Moth (Thaumetopoea processionea) and Exposure Hazards
by Paula Halbig, Horst Delb and Axel Schopf
Int. J. Environ. Res. Public Health 2025, 22(9), 1361; https://doi.org/10.3390/ijerph22091361 - 29 Aug 2025
Viewed by 581
Abstract
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by [...] Read more.
Potential climatic and land-use changes may favor an increase in the population densities and range expansion of oak processionary moth (OPM) in Central and Western Europe in the future. This could lead to more significant threats to human and animal health, caused by the urticating setae released by OPM larvae, and more severe oak defoliation by the larvae. To cope with the public health issue, a basis for OPM hazard assessment and management was created by quantifying the setae formation potential of OPM. While a single larva forms ca. 857,000 setae during its lifespan, a single infested oak tree may be contaminated with up to 10–24 billion (109) setae during an OPM outbreak. Moreover, the possible setae contamination threat to humans through airborne setae dispersal was studied in worst-case exposure simulations in the field. The highest airborne setae concentration was straight downwind, but turbulences up to 150° from the air flow were observed. The findings of this study will improve biohazard quantification as a basis for decision-making on preventive or mechanical control measures and enable an effective protection of human health. This study provides applicable information to derive warnings and recommendations for the public, as well as land managers and authorities. Full article
(This article belongs to the Special Issue Feature Papers in Environmental Exposure and Toxicology)
Show Figures

Figure 1

8 pages, 950 KB  
Article
Occupational Exposure of Forest Workers to the Urticating Setae of the Pine Processionary Moth Thaumetopoea pityocampa
by Mario Olivieri, Enzo Ludovico and Andrea Battisti
Int. J. Environ. Res. Public Health 2023, 20(6), 4735; https://doi.org/10.3390/ijerph20064735 - 8 Mar 2023
Cited by 7 | Viewed by 2262
Abstract
The larvae of the pine processionary moth are a threat to public health because they produce detachable setae that are about 200 µm long and 6 µm wide, reaching a total number of up to 1 million per mature individual. The setae are [...] Read more.
The larvae of the pine processionary moth are a threat to public health because they produce detachable setae that are about 200 µm long and 6 µm wide, reaching a total number of up to 1 million per mature individual. The setae are intended to be released to protect the larvae from predators but become a public health issue when in contact with humans and warm-blooded animals. Symptoms associated with the setae are typically urticaria and local swelling erythema, although edema of the skin, conjunctivitis or respiratory mucosa may occur. Occupational exposure concerns mainly forest workers but also farmers and gardeners. In the present study, we quantify the exposure to the setae of forest workers in a district of Northern Italy. The pine processionary moth represents a real case of occupational exposure as the urticating setae produced by the larvae caused symptoms in most forest workers directly in contact with the infested trees. In addition, the urticating setae were detected on the body of the chainsaw operators and in the surroundings of the felled trees during the operations. The non-exposed workers of the same agency did not report symptoms, with only one exception, likely linked to a non-occupational exposure. As the risk is not immediately perceived by the workers because direct contact with the larvae is unlikely, a campaign of information to workers and the general population living nearby infested forestry areas about the risk associated with airborne exposure is recommended. This becomes especially important in the areas of recent expansion of the insect, where people are inexperienced. Full article
Show Figures

Figure 1

15 pages, 2799 KB  
Review
Range-Expansion in Processionary Moths and Biological Control
by Jetske G. de Boer and Jeffrey A. Harvey
Insects 2020, 11(5), 267; https://doi.org/10.3390/insects11050267 - 28 Apr 2020
Cited by 29 | Viewed by 9755
Abstract
Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak [...] Read more.
Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak (Thaumetopoea processionea) and pine (T. pityocampa) processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken ‘nests’ that they use to congregate when not feeding. During outbreaks, processionary caterpillars are capable of stripping foliage from their food plants (oak and pine trees), generating considerable economic damage. Moreover, the third to last instar caterpillars of both species produce copious hairs as a means of defence against natural enemies, including both vertebrate and invertebrate predators, and parasitoids. These hairs contain the toxin thaumetopoein that causes strong allergic reactions when it comes into contact with human skin or other membranes. In response to a warming climate, PPM is expanding its range northwards, while OPM outbreaks are increasing in frequency and intensity, particularly in northern Germany, the Netherlands, and southern U.K., where it was either absent or rare previously. Here, we discuss how warming and escape from co-evolved natural enemies has benefitted both species, and suggest possible strategies for biological control. Full article
(This article belongs to the Special Issue Ecology and Management of Invasive Insects in Forest Ecosystems)
Show Figures

Figure 1

Back to TopTop