Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = urinary iodine excretion (UI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2217 KiB  
Article
Changes in Central Sensitivity to Thyroid Hormones vs. Urine Iodine during Pregnancy
by Ioannis Ilias, Charalampos Milionis, Maria Alexiou, Ekaterini Michou, Chrysi Karavasili, Evangelia Venaki, Kostas Markou, Irini Mamali and Eftychia Koukkou
Med. Sci. 2024, 12(4), 50; https://doi.org/10.3390/medsci12040050 - 27 Sep 2024
Cited by 1 | Viewed by 1482
Abstract
Introduction/Aim: Central sensitivity to thyroid hormones refers to the responsiveness of the hypothalamic–pituitary–thyroid (HPT) axis to changes in circulating free thyroxine (fT4). Although dose–response relationships between thyroid hormones per se and urinary iodine (UI) levels have been observed, central sensitivity to thyroid hormones [...] Read more.
Introduction/Aim: Central sensitivity to thyroid hormones refers to the responsiveness of the hypothalamic–pituitary–thyroid (HPT) axis to changes in circulating free thyroxine (fT4). Although dose–response relationships between thyroid hormones per se and urinary iodine (UI) levels have been observed, central sensitivity to thyroid hormones in relation to UI remains unexplored. The aim of the present study was to evaluate central sensitivity to thyroid hormones (by means of the Thyroid Feedback Quantile-based Index [TFQI], which is a calculated measure, based on TSH and fT4, that estimates central sensitivity to thyroid hormones) in pregnancy and to assess whether it differs according to gestational age and/or iodine intake. Materials and Methods: One thousand, one hundred and two blood and urine samples were collected from pregnant women (with a mean age ± SD of 30.4 ± 4.6 years) during singleton pregnancies; women with known/diagnosed thyroid disease were excluded. Specifically, TSH and fT4, anti-thyroid peroxidase antibodies and UI were measured in each trimester and at two months postpartum, while the TFQI was calculated for all the study samples. After the elimination of outliers, statistical analysis was conducted with analysis of variance (ANOVA) for the variables versus time period, while Pearson’s correlation was used to assess the TFQI versus UI. Results: The mean TFQI index ranged from −0.060 (second trimester) to −0.053 (two months postpartum), while the corresponding UI was 137 and 165 μg/L, respectively. The TFQI-UI correlation was marginally negative (Pearson r: −0.323, p: 0.04) and significantly positive (r: +0.368, p: 0.050) for UI values over 250 μg/L, in the first and the second trimesters of pregnancy, respectively. Discussion: The TFQI is a new index reflecting central sensitivity to thyroid hormones. A lower TFQI indicates higher sensitivity to thyroid hormones. In our sample, the TFQI was mainly positively related to iodine intake in the second trimester of pregnancy (following the critical period of organogenesis). Thus, the observed changes in the TFQI may reflect the different ways of the central action of thyroid hormones, according to the phase of pregnancy. These results have the potential to enhance our comprehension of the changes in the HPT axis’ function via variations in central sensitivity to thyroid hormones and its interplay with nutritional iodine status during pregnancy. Full article
Show Figures

Figure 1

14 pages, 8963 KiB  
Article
Sodium, Potassium and Iodine Intake, in a National Adult Population Sample of the Republic of Moldova
by Lanfranco D’Elia, Galina Obreja, Angela Ciobanu, Joao Breda, Jo Jewell and Francesco P. Cappuccio
Nutrients 2019, 11(12), 2896; https://doi.org/10.3390/nu11122896 - 28 Nov 2019
Cited by 17 | Viewed by 5515
Abstract
In the Republic of Moldova, more than half of all deaths due to noncommunicable diseases (NCDs) are caused by cardiovascular disease (CVD). Excess salt (sodium) and inadequate potassium intakes are associated with high CVD. Moreover, salt iodisation is the preferred policy to prevent [...] Read more.
In the Republic of Moldova, more than half of all deaths due to noncommunicable diseases (NCDs) are caused by cardiovascular disease (CVD). Excess salt (sodium) and inadequate potassium intakes are associated with high CVD. Moreover, salt iodisation is the preferred policy to prevent iodine deficiency and associated disorders. However, there is no survey that has directly measured sodium, potassium and iodine consumption in adults in the Republic of Moldova. A national random sample of adults attended a screening including demographic, anthropometric and physical measurements. Sodium, potassium and iodine intakes were assessed by 24 h urinary sodium (UNa), potassium (UK) and iodine (UI) excretions. Knowledge, attidues and behaviours were collected by questionnaire. Eight-hundred and fifty-eight participants (326 men and 532 women, 18–69 years) were included in the analysis (response rate 66%). Mean age was 48.5 years (SD 13.8). Mean UNa was 172.7 (79.3) mmoL/day, equivalent to 10.8 g of salt/day and potassium excretion 72.7 (31.5) mmoL/day, equivalent to 3.26 g/day. Only 11.3% met the World Health Organization (WHO) recommended salt targets of 5 g/day and 39% met potassium targets (>90 mmoL/day). Whilst 81.7% declared limiting their consumption of processed food and over 70% not adding salt at the table, only 8.8% looked at sodium content of food, 31% still added salt when cooking and less than 1% took other measures to control salt consumption. Measures of awareness were significantly more common in urban compared to rural areas. Mean urinary iodine was 225 (SD: 152; median 196) mcg/24 h, with no difference between sexes. According to WHO criteria, 41.0% had adequate iodine intake. Iodine content of salt table was 21.0 (SD: 18.6) mg/kg, lower in rural than urban areas (16.7, SD = 18.6 vs. 28.1, SD = 16.5 mg/kg, p < 0.001). In most cases participants were not using iodised salt as their main source of salt, more so in rural areas. In the Republic of Moldova, salt consumption is unequivocally high, potassium consumption is lower than recommended, both in men and in women, whilst iodine intake is still inadequate in one in three people, although severe iodine deficiency is rare. Salt consumed is often not iodised. Full article
(This article belongs to the Special Issue Effects of Iodine Intake on Human Health)
Show Figures

Figure 1

Back to TopTop