Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = unmanned aerial vehicles ad hoc network (UANET)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5460 KiB  
Article
Advancing Convergence Speed of Distributed Consensus Time Synchronization Algorithms in Unmanned Aerial Vehicle Ad Hoc Networks
by Jianfeng Wu, Kaiyuan Bai and Huabing Wu
Drones 2024, 8(7), 285; https://doi.org/10.3390/drones8070285 - 25 Jun 2024
Cited by 3 | Viewed by 1851
Abstract
Time synchronization is a critical prerequisite for unmanned aerial vehicle ad hoc networks (UANETs) to facilitate navigation and positioning, formation control, and data fusion. However, given the dynamic changes in UANETs, improving the convergence speeds of distributed consensus time synchronization algorithms with only [...] Read more.
Time synchronization is a critical prerequisite for unmanned aerial vehicle ad hoc networks (UANETs) to facilitate navigation and positioning, formation control, and data fusion. However, given the dynamic changes in UANETs, improving the convergence speeds of distributed consensus time synchronization algorithms with only local information poses a major challenge. To address this challenge, this study first establishes a convex model on the basis of graph theory and relevant theories of random matrices to approximate the original problem. Subsequently, three acceleration schemes for consensus algorithms are derived by minimizing the Frobenius norm of the iteration matrix. Additionally, this study provides a new upper bound for constant communication weights and discusses the limitations of existing metrics used to measure the convergence speeds of consensus algorithms. Finally, the proposed schemes are compared with existing ones through simulation. Our results indicate that the three proposed schemes can achieve faster convergence while maintaining high-precision synchronization in scenarios with static or known topological structures of networks. In scenarios where the topological structure of a UANET is time-varying and unknown, the scheme proposed in this paper achieves the fastest convergence speed. Full article
Show Figures

Figure 1

21 pages, 603 KiB  
Article
Delay-Aware and Link-Quality-Aware Geographical Routing Protocol for UANET via Dueling Deep Q-Network
by Yanan Zhang and Hongbing Qiu
Sensors 2023, 23(6), 3024; https://doi.org/10.3390/s23063024 - 10 Mar 2023
Cited by 6 | Viewed by 2358
Abstract
In an unmanned aerial vehicles ad hoc network (UANET), UAVs communicate with each other to accomplish intricate tasks collaboratively and cooperatively. However, the high mobility of UAVs, the variable link quality, and heavy traffic loads can lead to difficulties in finding an optimal [...] Read more.
In an unmanned aerial vehicles ad hoc network (UANET), UAVs communicate with each other to accomplish intricate tasks collaboratively and cooperatively. However, the high mobility of UAVs, the variable link quality, and heavy traffic loads can lead to difficulties in finding an optimal communication path. We proposed a delay-aware and link-quality-aware geographical routing protocol for a UANET via the dueling deep Q-network (DLGR-2DQ) to address these problems. Firstly, the link quality was not only related to the physical layer metric, the signal-to-noise ratio, which was influenced by path loss and Doppler shifts, but also the expected transmission count of the data link layer. In addition, we also considered the total waiting time of packets in the candidate forwarding node in order to decrease the end-to-end delay. Then, we modeled the packet-forwarding process as a Markov decision process. We crafted an appropriate reward function that utilized the penalty value for each additional hop, total waiting time, and link quality to accelerate the learning of the dueling DQN algorithm. Finally, the simulation results illustrated that our proposed routing protocol outperformed others in terms of the packet delivery ratio and the average end-to-end delay. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 637 KiB  
Article
DDQN with Prioritized Experience Replay-Based Optimized Geographical Routing Protocol of Considering Link Stability and Energy Prediction for UANET
by Yanan Zhang and Hongbing Qiu
Sensors 2022, 22(13), 5020; https://doi.org/10.3390/s22135020 - 3 Jul 2022
Cited by 13 | Viewed by 2931
Abstract
Unmanned aerial vehicles (UAVs) are important equipment for efficiently executing search and rescue missions in disaster or air-crash scenarios. Each node can communicate with the others by a routing protocol in UAV ad hoc networks (UANETs). However, UAV routing protocols are faced with [...] Read more.
Unmanned aerial vehicles (UAVs) are important equipment for efficiently executing search and rescue missions in disaster or air-crash scenarios. Each node can communicate with the others by a routing protocol in UAV ad hoc networks (UANETs). However, UAV routing protocols are faced with the challenges of high mobility and limited node energy, which hugely lead to unstable link and sparse network topology due to premature node death. Eventually, this severely affects network performance. In order to solve these problems, we proposed the deep-reinforcement-learning-based geographical routing protocol of considering link stability and energy prediction (DSEGR) for UANETs. First of all, we came up with the link stability evaluation indicator and utilized the autoregressive integrated moving average (ARIMA) model to predict the residual energy of neighbor nodes. Then, the packet forward process was modeled as a Markov Decision Process, and according to a deep double Q network with prioritized experience replay to learn the routing-decision process. Meanwhile, a reward function was designed to obtain a better convergence rate, and the analytic hierarchy process (AHP) was used to analyze the weights of the considered factors in the reward function. Finally, to verify the effectiveness of DSEGR, we conducted simulation experiments to analyze network performance. The simulation results demonstrate that our proposed routing protocol remarkably outperforms others in packet delivery ratio and has a faster convergence rate. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

15 pages, 1725 KiB  
Article
Performance Enhancement of Optimized Link State Routing Protocol by Parameter Configuration for UANET
by Esmot Ara Tuli, Mohtasin Golam, Dong-Seong Kim and Jae-Min Lee
Drones 2022, 6(1), 22; https://doi.org/10.3390/drones6010022 - 13 Jan 2022
Cited by 33 | Viewed by 5029
Abstract
The growing need for wireless communication has resulted in the widespread usage of unmanned aerial vehicles (UAVs) in a variety of applications. Designing a routing protocol for UAVs is paramount as well as challenging due to its dynamic attributes. The difficulty stems from [...] Read more.
The growing need for wireless communication has resulted in the widespread usage of unmanned aerial vehicles (UAVs) in a variety of applications. Designing a routing protocol for UAVs is paramount as well as challenging due to its dynamic attributes. The difficulty stems from features other than mobile ad hoc networks (MANET), such as aerial mobility in 3D space and frequently changing topology. This paper analyzes the performance of four topology-based routing protocols, dynamic source routing (DSR), ad hoc on-demand distance vector (AODV), geographic routing protocol (GRP), and optimized link state routing (OLSR), by using practical simulation software OPNET 14.5. Performance evaluation carries out various metrics such as throughput, delay, and data drop rate. Moreover, the performance of the OLSR routing protocol is enhanced and named “E-OLSR” by tuning parameters and reducing holding time. The optimized E-OLSR settings provide better performance than the conventional request for comments (RFC 3626) in the experiment, making it suitable for use in UAV ad hoc network (UANET) environments. Simulation results indicate the proposed E-OLSR outperforms the existing OLSR and achieves supremacy over other protocols mentioned in this paper. Full article
Show Figures

Figure 1

Back to TopTop