Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = uneven-aged broadleaf stands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4977 KiB  
Article
Contrasting Regeneration Patterns in Abies alba-Dominated Stands: Insights from Structurally Diverse Mountain Forests across Europe
by Bohdan Kolisnyk, Camilla Wellstein, Marcin Czacharowski, Stanisław Drozdowski and Kamil Bielak
Forests 2024, 15(7), 1182; https://doi.org/10.3390/f15071182 - 8 Jul 2024
Cited by 3 | Viewed by 1297
Abstract
To maintain the ecosystem resilience to large-scale disturbances in managed forests, it is essential to adhere to the principles of close-to-nature silviculture, adapt practices to the traits of natural forest types, and utilize natural processes, including natural regeneration. This study examines the natural [...] Read more.
To maintain the ecosystem resilience to large-scale disturbances in managed forests, it is essential to adhere to the principles of close-to-nature silviculture, adapt practices to the traits of natural forest types, and utilize natural processes, including natural regeneration. This study examines the natural regeneration patterns in silver fir (Abies alba Mill.)-dominated forests, analyzing how the stand structure—tree size diversity, species composition, and stand density—affects the regeneration. We analyze the data from four sites in Poland, Germany, and Italy, employing generalized linear and zero-inflated models to evaluate the impact of the management strategies (even- vs. uneven-aged) and forester-controlled stand characteristics (structural diversity, broadleaf species admixture, and stand density) on the probability of regeneration, its density, and the developmental stages (seedling, small sapling, and tall sapling) across a climatic gradient. Our results indicate a significantly higher probability of regeneration in uneven-aged stands, particularly in areas with lower temperatures and lower overall regeneration density. The tree size diversity in the uneven-aged stands favors advancement from juveniles to more developed stages (seedling to sapling) in places with higher aridity. A denser stand layer (higher stand total basal area) leads to a lower density of natural regeneration for all the present species, except silver fir if considered separately, signifying that, by regulating the stand growing stock, we can selectively promote silver fir. A higher admixture of broadleaf species generally decreases the regeneration density across all the species, except in a water-rich site in the Bavarian Alps, where it had a strong positive impact. These findings underscore the complex interactions of forest ecosystems and provide a better understanding required for promoting silver fir regeneration, which is essential for a close-to-nature silviculture under climate change. Full article
(This article belongs to the Special Issue Ecosystem-Disturbance Interactions in Forests)
Show Figures

Figure 1

16 pages, 3125 KiB  
Article
Selection of the Optimal Timber Harvest Based on Optimizing Stand Spatial Structure of Broadleaf Mixed Forests
by Qi Sheng, Lingbo Dong, Ying Chen and Zhaogang Liu
Forests 2023, 14(10), 2046; https://doi.org/10.3390/f14102046 - 12 Oct 2023
Cited by 4 | Viewed by 2009
Abstract
There is increasing interest in optimizing stand structure through forest management. The forest structure influences growth and maintains the structure, promoting sustainability. Structure-based forest management (SBFM), which is based on the spatial relationships between a reference tree and its four nearest neighbors, considers [...] Read more.
There is increasing interest in optimizing stand structure through forest management. The forest structure influences growth and maintains the structure, promoting sustainability. Structure-based forest management (SBFM), which is based on the spatial relationships between a reference tree and its four nearest neighbors, considers the best spatial structure for the stand and promotes the development towards a healthy and stable state by selectively thinning specific trees. This management method is a scientific approach for sustainable forest management, and appropriate harvesting is the core principle of uneven-aged forest management. However, the application of this approach in the management of uneven-aged mixed stands is a challenge because their dynamics are more difficult to elucidate than those of planted or pure stands. This study presented a stand spatial structure optimization model with a transition matrix growth model for selecting suitable timber harvest during uneven-aged mixed-forest management optimization. The model was developed using three neighborhood-based structural indices (species mingling, diametric differentiation, and horizontal spatial pattern) and diameter diversity indices. The approach was applied to four broadleaf stands in the Maoershan Forest Farm of the Heilongjiang Province. The results demonstrate that optimizing the stand spatial structure with a transition matrix growth model improved the objective function values (F-index) by 23.8%, 12.8%, 14.6%, and 28.3%, and the optimal removal of trees from the stands ranged from 24.3% to 25.5%. The stand structure in the next cycle (after 5 years) was closer to the uneven-mixed state. The main conclusion of this study is that optimizing the stand spatial structure with a transition matrix growth model can improve the speed and accuracy of tree selection for harvesting in unevenly mixed forests, thus helping regulate stable and diverse forest growth. Full article
Show Figures

Figure 1

23 pages, 6749 KiB  
Article
A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery
by Jonathan Lisein, Marc Pierrot-Deseilligny, Stéphanie Bonnet and Philippe Lejeune
Forests 2013, 4(4), 922-944; https://doi.org/10.3390/f4040922 - 6 Nov 2013
Cited by 353 | Viewed by 24676
Abstract
The recent development of operational small unmanned aerial systems (UASs) opens the door for their extensive use in forest mapping, as both the spatial and temporal resolution of UAS imagery better suit local-scale investigation than traditional remote sensing tools. This article focuses on [...] Read more.
The recent development of operational small unmanned aerial systems (UASs) opens the door for their extensive use in forest mapping, as both the spatial and temporal resolution of UAS imagery better suit local-scale investigation than traditional remote sensing tools. This article focuses on the use of combined photogrammetry and “Structure from Motion” approaches in order to model the forest canopy surface from low-altitude aerial images. An original workflow, using the open source and free photogrammetric toolbox, MICMAC (acronym for Multi Image Matches for Auto Correlation Methods), was set up to create a digital canopy surface model of deciduous stands. In combination with a co-registered light detection and ranging (LiDAR) digital terrain model, the elevation of vegetation was determined, and the resulting hybrid photo/LiDAR canopy height model was compared to data from a LiDAR canopy height model and from forest inventory data. Linear regressions predicting dominant height and individual height from plot metrics and crown metrics showed that the photogrammetric canopy height model was of good quality for deciduous stands. Although photogrammetric reconstruction significantly smooths the canopy surface, the use of this workflow has the potential to take full advantage of the flexible revisit period of drones in order to refresh the LiDAR canopy height model and to collect dense multitemporal canopy height series. Full article
Show Figures

Graphical abstract

Back to TopTop