Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = underwater bright channel prior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4837 KiB  
Article
Rethinking Underwater Crab Detection via Defogging and Channel Compensation
by Yueping Sun, Bikang Yuan, Ziqiang Li, Yong Liu and Dean Zhao
Fishes 2024, 9(2), 60; https://doi.org/10.3390/fishes9020060 - 30 Jan 2024
Cited by 2 | Viewed by 2325
Abstract
Crab aquaculture is an important component of the freshwater aquaculture industry in China, encompassing an expansive farming area of over 6000 km2 nationwide. Currently, crab farmers rely on manually monitored feeding platforms to count the number and assess the distribution of crabs [...] Read more.
Crab aquaculture is an important component of the freshwater aquaculture industry in China, encompassing an expansive farming area of over 6000 km2 nationwide. Currently, crab farmers rely on manually monitored feeding platforms to count the number and assess the distribution of crabs in the pond. However, this method is inefficient and lacks automation. To address the problem of efficient and rapid detection of crabs via automated systems based on machine vision in low-brightness underwater environments, a two-step color correction and improved dark channel prior underwater image processing approach for crab detection is proposed in this paper. Firstly, the parameters of the dark channel prior are optimized with guided filtering and quadtrees to solve the problems of blurred underwater images and artificial lighting. Then, the gray world assumption, the perfect reflection assumption, and a strong channel to compensate for the weak channel are applied to improve the pixels of red and blue channels, correct the color of the defogged image, optimize the visual effect of the image, and enrich the image information. Finally, ShuffleNetV2 is applied to optimize the target detection model to improve the model detection speed and real-time performance. The experimental results show that the proposed method has a detection rate of 90.78% and an average confidence level of 0.75. Compared with the improved YOLOv5s detection results of the original image, the detection rate of the proposed method is increased by 21.41%, and the average confidence level is increased by 47.06%, which meets a good standard. This approach could effectively build an underwater crab distribution map and provide scientific guidance for crab farming. Full article
Show Figures

Figure 1

16 pages, 7031 KiB  
Article
Enhancement and Optimization of Underwater Images and Videos Mapping
by Chengda Li, Xiang Dong, Yu Wang and Shuo Wang
Sensors 2023, 23(12), 5708; https://doi.org/10.3390/s23125708 - 19 Jun 2023
Cited by 8 | Viewed by 2429
Abstract
Underwater images tend to suffer from critical quality degradation, such as poor visibility, contrast reduction, and color deviation by virtue of the light absorption and scattering in water media. It is a challenging problem for these images to enhance visibility, improve contrast, and [...] Read more.
Underwater images tend to suffer from critical quality degradation, such as poor visibility, contrast reduction, and color deviation by virtue of the light absorption and scattering in water media. It is a challenging problem for these images to enhance visibility, improve contrast, and eliminate color cast. This paper proposes an effective and high-speed enhancement and restoration method based on the dark channel prior (DCP) for underwater images and video. Firstly, an improved background light (BL) estimation method is proposed to estimate BL accurately. Secondly, the R channel’s transmission map (TM) based on the DCP is estimated sketchily, and a TM optimizer integrating the scene depth map and the adaptive saturation map (ASM) is designed to refine the afore-mentioned coarse TM. Later, the TMs of G–B channels are computed by their ratio to the attenuation coefficient of the red channel. Finally, an improved color correction algorithm is adopted to improve visibility and brightness. Several typical image-quality assessment indexes are employed to testify that the proposed method can restore underwater low-quality images more effectively than other advanced methods. An underwater video real-time measurement is also conducted on the flipper-propelled underwater vehicle-manipulator system to verify the effectiveness of the proposed method in the real scene. Full article
Show Figures

Figure 1

23 pages, 9384 KiB  
Article
Subjective and Objective Quality Evaluation for Underwater Image Enhancement and Restoration
by Wenxia Li, Chi Lin, Ting Luo, Hong Li, Haiyong Xu and Lihong Wang
Symmetry 2022, 14(3), 558; https://doi.org/10.3390/sym14030558 - 10 Mar 2022
Cited by 9 | Viewed by 3514
Abstract
Since underwater imaging is affected by the complex water environment, it often leads to severe distortion of the underwater image. To improve the quality of underwater images, underwater image enhancement and restoration methods have been proposed. However, many underwater image enhancement and restoration [...] Read more.
Since underwater imaging is affected by the complex water environment, it often leads to severe distortion of the underwater image. To improve the quality of underwater images, underwater image enhancement and restoration methods have been proposed. However, many underwater image enhancement and restoration methods produce over-enhancement or under-enhancement, which affects their application. To better design underwater image enhancement and restoration methods, it is necessary to research the underwater image quality evaluation (UIQE) for underwater image enhancement and restoration methods. Therefore, a subjective evaluation dataset for an underwater image enhancement and restoration method is constructed, and on this basis, an objective quality evaluation method of underwater images, based on the relative symmetry of underwater dark channel prior (UDCP) and the underwater bright channel prior (UBCP) is proposed. Specifically, considering underwater image enhancement in different scenarios, a UIQE dataset is constructed, which contains 405 underwater images, generated from 45 different underwater real images, using 9 representative underwater image enhancement methods. Then, a subjective quality evaluation of the UIQE database is studied. To quantitatively measure the quality of the enhanced and restored underwater images with different characteristics, an objective UIQE index (UIQEI) is used, by extracting and fusing four groups of features, including: (1) the joint statistics of normalized gradient magnitude (GM) and Laplacian of Gaussian (LOG) features, based on the underwater dark channel map; (2) the joint statistics of normalized gradient magnitude (GM) and Laplacian of Gaussian (LOG) features, based on the underwater bright channel map; (3) the saturation and colorfulness features; (4) the fog density feature; (5) the global contrast feature; these features capture key aspects of underwater images. Finally, the experimental results are analyzed, qualitatively and quantitatively, to illustrate the effectiveness of the proposed UIQEI method. Full article
Show Figures

Figure 1

20 pages, 12469 KiB  
Article
Enhancement of Low Contrast Images Based on Effective Space Combined with Pixel Learning
by Gengfei Li, Guiju Li and Guangliang Han
Information 2017, 8(4), 135; https://doi.org/10.3390/info8040135 - 1 Nov 2017
Cited by 4 | Viewed by 6563
Abstract
Images captured in bad conditions often suffer from low contrast. In this paper, we proposed a simple, but efficient linear restoration model to enhance the low contrast images. The model’s design is based on the effective space of the 3D surface graph of [...] Read more.
Images captured in bad conditions often suffer from low contrast. In this paper, we proposed a simple, but efficient linear restoration model to enhance the low contrast images. The model’s design is based on the effective space of the 3D surface graph of the image. Effective space is defined as the minimum space containing the 3D surface graph of the image, and the proportion of the pixel value in the effective space is considered to reflect the details of images. The bright channel prior and the dark channel prior are used to estimate the effective space, however, they may cause block artifacts. We designed the pixel learning to solve this problem. Pixel learning takes the input image as the training example and the low frequency component of input as the label to learn (pixel by pixel) based on the look-up table model. The proposed method is very fast and can restore a high-quality image with fine details. The experimental results on a variety of images captured in bad conditions, such as nonuniform light, night, hazy and underwater, demonstrate the effectiveness and efficiency of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop