Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = understeer coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5619 KiB  
Communication
Enhanced Vehicle Dynamics and Safety through Tire–Road Friction Estimation for Predictive ELSD Control under Various Conditions of General Racing Tracks
by Seunghoon Woo, Seunguk Jeon, Eunhyek Joa and Donghoon Shin
Appl. Sci. 2024, 14(5), 1903; https://doi.org/10.3390/app14051903 - 26 Feb 2024
Viewed by 2850
Abstract
This study focuses on the tire–road friction estimation for the predictive control strategy of electronically limited slip differential (ELSD) to improve the handling and acceleration performance of front-wheel drive cars, which typically suffer from excessive understeer and inner drive wheel spin during acceleration [...] Read more.
This study focuses on the tire–road friction estimation for the predictive control strategy of electronically limited slip differential (ELSD) to improve the handling and acceleration performance of front-wheel drive cars, which typically suffer from excessive understeer and inner drive wheel spin during acceleration while turning due to reduced vertical load on the wheel. To mitigate this, we propose a control logic for ELSD that enhances course followability and acceleration by pre-transferring the driving torque from the inside to the outside wheel, considering the estimated traction potential for rapid response. It is essential to improve the control accuracy of wheel spin prediction by predicting the friction coefficient of the road surface. Furthermore, this study extends to the analysis of vehicle dynamics during lane-change maneuvers on low-friction surfaces, emphasizing the role of accurate tire–road friction estimation in vehicle safety. A CarSim 2023-based simulation study was conducted to investigate the vehicle response on snowy roads with low friction coefficients (μ = 0.2) and low temperatures (−5 °C). The results demonstrated that even minimal steering input could result in significant side-slip angles, highlighting the nonlinear vehicle behavior and the critical need for robust traction estimation in such challenging conditions of general racing tracks. The proposed friction-estimation method was evaluated through vehicle testing and has been substantiated by patents for its originality in control and friction-estimation approaches. The outcomes of these combined methodologies underline the critical importance of tire–road friction coefficient estimation in both the effectiveness of the ELSD system and the broader context of active safety systems. Full article
(This article belongs to the Special Issue Vehicle Technology and Its Applications)
Show Figures

Figure 1

19 pages, 2039 KiB  
Systematic Review
Association between Metabolic Syndrome Components and Cardiac Autonomic Modulation among Children and Adolescents: A Systematic Review and Meta-Analysis
by Rashmi Supriya, Fei-Fei Li, Yi-De Yang, Wei Liang and Julien S. Baker
Biology 2021, 10(8), 699; https://doi.org/10.3390/biology10080699 - 22 Jul 2021
Cited by 12 | Viewed by 4028
Abstract
Background: the clustering of metabolic syndrome (MetS) risk factors is becoming more prevalent in children, leading to the development of type 2 diabetes (T2D) and cardiovascular diseases in early adulthood. The impact of MetS risk factors on cardiac autonomic modulation (CAM) or vice [...] Read more.
Background: the clustering of metabolic syndrome (MetS) risk factors is becoming more prevalent in children, leading to the development of type 2 diabetes (T2D) and cardiovascular diseases in early adulthood. The impact of MetS risk factors on cardiac autonomic modulation (CAM) or vice versa has been noted to track from childhood to pre-adolescence and adolescence. Understating associations in this age group may help to improve the clinical outcomes of the MetS, even when MetS symptoms are not visible. Potential damage from each individual MetS component and the ability to predict early cardiac damage or upcoming cardiovascular events is very important. Therefore, the present systematic review and meta-analysis investigated the associations between CAM and MetS risk factors individually to verify which of the MetS risk components were significantly correlated with heart rate variability (HRV) indices before or at the onset of the MetS among young people. The purpose of this review was to outline the importance of potentially screening HRV indices in young people even with only one MetS risk factor, as a pre-indicator for early cardiovascular risk stratification. Methods: cross-sectional studies that examined the relationship of MetS risk factors with HRV indices were searched using four databases including PubMed, the Cochrane clinical trials library, Medline and the Web of Science. Correlation coefficients with 95% confidence intervals (95% CI), and random effects meta-analyses of the association between MetS risk factors with HRV indices were performed. Results: out of 14 cross-sectional studies and one case-control study, 8 studies (10 data sets) provided association data for the meta-analysis. Our results indicated significant positive correlations for systolic blood pressure (SBP) (correlation coefficient 0.13 (95%CI: 0.06; 0.19), I2 = 47.26%) and diastolic blood pressure (DBP) (correlation coefficient 0.09 (95%CI: −0.01; 0.18), I2 = 0%) with a Low Frequency/High Frequency ratio (LF/HF). Significant negative correlations for waist circumference (WC) (correlation coefficient −0.12 (95%CI: −0.19; −0.04), I2 = 51.50%), Triglycerides (TGs) (correlation coefficient −0.09 (95%CI: −0.15; −0.02), I2 = 0%) and ≥2 MetS risk factors (correlation coefficient −0.10 (95%CI: −0.16; −0.03), I2 = 0%); with high frequency (HF) were revealed. Significant positive correlations for high density lipoprotein (HDL) (correlation coefficient 0.08 (95%CI: 0.05; 0.11), I2 = 0%) and significant negative correlations of ≥2 MetS risk (correlation coefficient −0.04 (95%CI: −0.12; 0.03), I2 = 0.0%) with low frequency (LF) were revealed. Significant negative correlations for TGs (correlation coefficient −0.09 (95%CI: −0.23; 0.05), I2 = 2.01%) with a mean square root of the sum of differences between mean time between two successive intervals (rMSSD) and significant positive correlation of HDL (correlation coefficient 0.09 (95%CI: −0.01; 0.19), I2 = 0.33%) with standard deviation of the time between two successive intervals (SDNN) were also revealed. An Egger’s test indicated that there was no obvious publication bias for any of the above relationships except for TGs and rMSSD. The significance level stipulated for the meta-analysis was p < 0.05. Conclusions: lipid profiles (HDL and TGs), WC and BP were associated with CAM in young people up to the age of 19 years. The use of HRV indices to predict future MetS risk, and relationships with individual risk factors including HDL, BP, WC and TGs, were established. Future studies related to young people (up to the age of 19 years) are recommended to explore the associations reported here further. Full article
Show Figures

Figure 1

23 pages, 14928 KiB  
Article
Influence of Flow Disturbances behind the 90° Bend on the Indications of the Ultrasonic Flow Meter with Clamp-On Sensors on Pipelines
by Piotr Synowiec, Artur Andruszkiewicz, Wiesław Wędrychowicz, Piotr Piechota and Elżbieta Wróblewska
Sensors 2021, 21(3), 868; https://doi.org/10.3390/s21030868 - 28 Jan 2021
Cited by 12 | Viewed by 3647
Abstract
The subject matter of the article concerns velocities/flow rate measurements in the area of disturbed flows-behind the 90° bend. They were conducted by means of an ultrasonic flowmeter with clamp-on sensors on pipeline, for water and two different Reynolds numbers of 70,000 and [...] Read more.
The subject matter of the article concerns velocities/flow rate measurements in the area of disturbed flows-behind the 90° bend. They were conducted by means of an ultrasonic flowmeter with clamp-on sensors on pipeline, for water and two different Reynolds numbers of 70,000 and 100,000, corresponding to two velocities of approximately 1.42 m/s and 2.04 m/s. The tests were carried out at 12 distances from the disturbance. Sensors on the circumference of the pipeline were mounted 30° each. The correction factor values were calculated for the given measurement geometry. The measurements have shown that the values of this coefficient are always greater than 1, which means that the ultrasonic flow meter understates the speed values. They also showed that already at a distance of 8 nominal diameters from the disturbance, the correction factor does not exceed 1.02, so the measurement errors are within the maximum permissible error (MPE) of a typical ultrasonic flow meter. For distances less than eight nominal diameters from the disturbance, not taking the correction factor value into the account can lead to systematic errors of up to 10.8%. Studies have also proved that in each measurement plane behind the disturbance there are two mounting angles for the ultrasonic sensors, 60° and 240° respectively, for which the correction factor values are minimal. Additionally, using the laser Doppler anemometry (LDA) method, velocity solids were determined at individual distances from the disturbance, and the projections of velocity blocks on the appropriate plane represented velocity profiles and indicated the distances from the disturbance at which these profiles stabilise. Full article
(This article belongs to the Special Issue Multi-Sensor Measurement and Data Fusion)
Show Figures

Figure 1

27 pages, 8478 KiB  
Article
Monitoring Effect of Spatial Growth on Land Surface Temperature in Dhaka
by Md. Mustafizur Rahman, Ram Avtar, Ali P. Yunus, Jie Dou, Prakhar Misra, Wataru Takeuchi, Netrananda Sahu, Pankaj Kumar, Brian Alan Johnson, Rajarshi Dasgupta, Ali Kharrazi, Shamik Chakraborty and Tonni Agustiono Kurniawan
Remote Sens. 2020, 12(7), 1191; https://doi.org/10.3390/rs12071191 - 8 Apr 2020
Cited by 30 | Viewed by 7912
Abstract
Spatial urban growth and its impact on land surface temperature (LST) is a high priority environmental issue for urban policy. Although the impact of horizontal spatial growth of cities on LST is well studied, the impact of the vertical spatial distribution of buildings [...] Read more.
Spatial urban growth and its impact on land surface temperature (LST) is a high priority environmental issue for urban policy. Although the impact of horizontal spatial growth of cities on LST is well studied, the impact of the vertical spatial distribution of buildings on LST is under-investigated. This is particularly true for cities in sub-tropical developing countries. In this study, TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-XDEM), Advanced Spaceborne Thermal Emission and Reflection (ASTER)-Global Digital Elevation Model (GDEM), and ALOS World 3D-30m (AW3D30) based Digital Surface Model (DSM) data were used to investigate the vertical growth of the Dhaka Metropolitan Area (DMA) in Bangladesh. Thermal Infrared (TIR) data (10.6-11.2µm) of Landsat-8 were used to investigate the seasonal variations in LST. Thereafter, the impact of horizontal and vertical spatial growth on LST was studied. The result showed that: (a) TanDEM-X DSM derived building height had a higher accuracy as compared to other existing DSM that reveals mean building height of the Dhaka city is approximately 10 m, (b) built-up areas were estimated to cover approximately 94%, 88%, and 44% in Dhaka South City Corporation (DSCC), Dhaka North City Corporation (DNCC), and Fringe areas, respectively, of DMA using a Support Vector Machine (SVM) classification method, (c) the built-up showed a strong relationship with LST (Kendall tau coefficient of 0.625 in summer and 0.483 in winter) in comparison to vertical growth (Kendall tau coefficient of 0.156 in the summer and 0.059 in the winter), and (d) the ‘low height-high density’ areas showed high LST in both seasons. This study suggests that vertical development is better than horizontal development for providing enough open spaces, green spaces, and preserving natural features. This study provides city planners with a better understating of sustainable urban planning and can promote the formulation of action plans for appropriate urban development policies. Full article
(This article belongs to the Special Issue Remote Sensing of the Urban Climate)
Show Figures

Graphical abstract

21 pages, 5173 KiB  
Article
Vehicle Cornering Performance Evaluation and Enhancement Based on CAE and Experimental Analyses
by Hsing-Hui Huang and Ming-Jiang Tsai
Appl. Sci. 2019, 9(24), 5428; https://doi.org/10.3390/app9245428 - 11 Dec 2019
Cited by 5 | Viewed by 12374
Abstract
A full-vehicle analysis model was constructed incorporating a SLA (Short Long Arm) strut front suspension system and a multi-link rear suspension system. CAE (Computer Aided Engineering) simulations were then performed to investigate the lateral acceleration, yaw rate, roll rate, and steering wheel angle [...] Read more.
A full-vehicle analysis model was constructed incorporating a SLA (Short Long Arm) strut front suspension system and a multi-link rear suspension system. CAE (Computer Aided Engineering) simulations were then performed to investigate the lateral acceleration, yaw rate, roll rate, and steering wheel angle of the vehicle during constant radius cornering tests. The validity of the simulation results was confirmed by comparing the computed value of the understeer coefficient (Kus) with the experimental value. The validated model was then used to investigate the steady-state cornering performance of the vehicle (i.e., the roll gradient and yaw rate gain) at various speeds. The transient response of the vehicle was then examined by means of simulated impulse steering tests. The simulation results were confirmed by comparing the calculated values of the phase lag, natural frequency, yaw rate gain rate, and damping ratio at various speeds with the experimental results. A final series of experiments was then performed to evaluate the relative effects of the cornering stiffness, initial toe-in angle, and initial camber angle on the steady-state and transient-state full-vehicle cornering handling performance. The results show that the handling performance can be improved by increasing the cornering stiffness and initial toe-in angle or reducing the initial camber angle. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Graphical abstract

Back to TopTop