Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = uncut chip geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 29594 KiB  
Article
Theoretical and Experimental Investigation of Surface Textures in Vibration-Assisted Micro Milling
by Bowen Song, Dawei Zhang, Xiubing Jing, Yingying Ren, Yun Chen and Huaizhong Li
Micromachines 2024, 15(1), 139; https://doi.org/10.3390/mi15010139 - 16 Jan 2024
Cited by 9 | Viewed by 2292
Abstract
Vibration-assisted micro milling is a promising technique for fabricating engineered mi-cro-scaled surface textures. This paper presents a novel approach for theoretical modeling of three-dimensional (3D) surface textures produced by vibration-assisted micro milling. The proposed model considers the effects of tool edge geometry, minimum [...] Read more.
Vibration-assisted micro milling is a promising technique for fabricating engineered mi-cro-scaled surface textures. This paper presents a novel approach for theoretical modeling of three-dimensional (3D) surface textures produced by vibration-assisted micro milling. The proposed model considers the effects of tool edge geometry, minimum uncut chip thickness (MUCT), and material elastic recovery. The surface texture formation under different machining parameters is simulated and analyzed through mathematical modeling. Two typical surface morphologies can be generated: wave-type and fish scale-type textures, depending on the phase difference between tool paths. A 2-degrees-of-freedom (2-DOF) vibration stage is also developed to provide vibration along the feed and cross-feed directions during micro-milling process. Micro-milling experiments on copper were carried out to verify the ability to fabricate controlled surface textures using the vibration stage. The simulated and experimentally generated surfaces show good agreement in geometry and dimensions. This work provides an accurate analytical model for vibration-assisted micro-milling surface generation and demonstrates its feasibility for efficient, flexible texturing. Full article
(This article belongs to the Special Issue Research Progress of Ultra-Precision Micro-Nano Machining)
Show Figures

Figure 1

17 pages, 5018 KiB  
Article
Simulation of Work Hardening in Machining Inconel 718 with Multiscale Grain Size
by Kejia Zhuang, Zhuo Wang, Linli Zou, Changni Fu and Jian Weng
Materials 2023, 16(9), 3562; https://doi.org/10.3390/ma16093562 - 6 May 2023
Cited by 4 | Viewed by 2172
Abstract
Machining nickel-based alloys always exhibits significant work-hardening behavior, which may help to improve the part quality by building a hardened layer on the surface, while also causing severe tool wear during machining. Hence, modeling the work-hardening phenomenon plays a critical role in the [...] Read more.
Machining nickel-based alloys always exhibits significant work-hardening behavior, which may help to improve the part quality by building a hardened layer on the surface, while also causing severe tool wear during machining. Hence, modeling the work-hardening phenomenon plays a critical role in the evaluation of tool wear and part quality. This paper aims to propose a numerical model to estimate the work-hardening layer for a deeper understanding of this behavior, employing both recrystallization-based and dislocation-based models to cover workpieces with multiscale grain sizes. Different user routines are implemented in the finite element method to simulate the increase in hardness in the deformed area due to recrystallization or changes in the dislocation density. The validation of the proposed model is performed with both literature and experimental data for Inconel 718 with small or large grain sizes. It is found that the recrystallization-based model is more suitable for predicting the work-hardening behavior of small-grain-size Inconel 718 and the dislocation-based model is better for that of large-grain-size Inconel 718. Further, as an important type of cutting tool in machining Inconel 718, the chamfered tools with different edge geometries are employed in the simulations of machining-induced work hardening. The results illustrate that the uncut chip thickness and chamfer angle have a significant influence on the work-hardening behavior. Full article
Show Figures

Figure 1

16 pages, 5162 KiB  
Article
Digitized Stress Function-Based Feed Rate Scheduling for Prevention of Mesoscale Tool Breakage during Milling Hardened Steel
by Yifan Gao, Jeong Hoon Ko and Heow Pueh Lee
Metals 2021, 11(2), 215; https://doi.org/10.3390/met11020215 - 26 Jan 2021
Cited by 1 | Viewed by 1953
Abstract
In this article, a digitized stress function-based feed rate scheduling algorithm is formulated for the prevention of tool breakage while having an optimum material removal rate in mesoscale rough milling of hardened steel. Instead of setting limits to the cutting forces and material [...] Read more.
In this article, a digitized stress function-based feed rate scheduling algorithm is formulated for the prevention of tool breakage while having an optimum material removal rate in mesoscale rough milling of hardened steel. Instead of setting limits to the cutting forces and material removal rates, the presented method regulates the tool’s stresses. A 3D coupled Eulerian-Lagrangian finite element method (FEM) model is used to simulate a 3D chip flow-based stress according to the mesoscale tool’s rotation during cutting of hardened steel. Maximum uncut chip thickness and tool engaging angle of the uncut chip is identified as the fundamental driving factors of tool breakage in down milling configuration. Furthermore, a multiple linear regression model is formed to digitize the stress with two major factors for digitized feed scheduling. The optimum feed rates for each segment along the tool path can be obtained through finite element models and a multiple linear regression model. The feed rate scheduling method is validated through cutting experiments with tool paths of linear and arc segments. In a series of experimental validations, the algorithm demonstrated the capability of reducing the machining time while eliminating cutting tool breakages. Full article
(This article belongs to the Special Issue State-of-the-Art Processing of Metals and Alloys)
Show Figures

Figure 1

17 pages, 5285 KiB  
Article
Numerical Modeling and Analysis of Ti6Al4V Alloy Chip for Biomedical Applications
by Waqas Saleem, Bashir Salah, Xavier Velay, Rafiq Ahmad, Razaullah Khan and Catalin I. Pruncu
Materials 2020, 13(22), 5236; https://doi.org/10.3390/ma13225236 - 19 Nov 2020
Cited by 12 | Viewed by 2755
Abstract
The influence of cutting forces during the machining of titanium alloys has attained prime attention in selecting the optimal cutting conditions to improve the surface integrity of medical implants and biomedical devices. So far, it has not been easy to explain the chip [...] Read more.
The influence of cutting forces during the machining of titanium alloys has attained prime attention in selecting the optimal cutting conditions to improve the surface integrity of medical implants and biomedical devices. So far, it has not been easy to explain the chip morphology of Ti6Al4V and the thermo-mechanical interactions involved during the cutting process. This paper investigates the chip configuration of the Ti6Al4V alloy under dry milling conditions at a macro and micro scale by employing the Johnson-Cook material damage model. 2D modeling, numerical milling simulations, and post-processing were conducted using the Abaqus/Explicit commercial software. The uncut chip geometry was modeled with variable thicknesses to accomplish the macro to micro-scale cutting by adapting a trochoidal path. Numerical results, predicted for the cutting reaction forces and shearing zone temperatures, were found in close approximation to experimental ones with minor deviations. Further analyses evaluated the influence of cutting speeds and contact friction coefficients over the chip flow stress, equivalent plastic strain, and chip morphology. The methodology developed can be implemented in resolving the industrial problems in the biomedical sector for predicting the chip morphology of the Ti6Al4V alloy, fracture mechanisms of hard-to-cut materials, and the effects of different cutting parameters on workpiece integrity. Full article
(This article belongs to the Special Issue Optimization and Simulation in Alloy Cutting Processes)
Show Figures

Figure 1

15 pages, 31179 KiB  
Article
Research on the Drilling Performance of a Helical Point Micro Drill with Different Geometry Parameters
by Zhiqiang Liang, Suyan Zhang, Xibin Wang, Haixin Guo, Tianfeng Zhou, Li Jiao and Pei Yan
Micromachines 2017, 8(7), 208; https://doi.org/10.3390/mi8070208 - 29 Jun 2017
Cited by 6 | Viewed by 7575
Abstract
During the micro-drilling process of stainless steel, the wear, fracture, and breakage of the micro-drill easily occur. Micro-drill geometry parameters have significant influence on the drilling performance of the micro-drill. Nowadays, the helical point micro-drill is proposed and its improved drilling performance is [...] Read more.
During the micro-drilling process of stainless steel, the wear, fracture, and breakage of the micro-drill easily occur. Micro-drill geometry parameters have significant influence on the drilling performance of the micro-drill. Nowadays, the helical point micro-drill is proposed and its improved drilling performance is validated by some researchers. In this study, to analyze the effect of geometry parameters of the helical point micro-drill on drilling performance, the mathematical models of the helical flank and ground flute are proposed, and the cutting lip shape, rake angle, and uncut chip thickness are calculated using MATLAB software. Then, based on the orthogonal tests, nine kinds of micro-drills with different point angles, web thicknesses, and helix angles are fabricated using a six-axis CNC tool grinder, and micro-drilling experiments on 1Cr18Ni9Ti stainless steel are carried out. The drilling force, the burr height, and the hole wall quality are measured and observed. The results show that the point angle is the main contributing factor for the thrust force and burr height, and the web thickness is the main contributing factor for the micro hole wall quality. The increased point angle offers a larger thrust force, but gives rise to a smaller exit burr. A larger web thickness leads to a larger thrust force and burr height, and results in a poor surface quality. With the helix angle increased, the thrust force and burr height decreases, and the surface quality of micro-hole improves. The geometry parameters with a point angle 70°, a point angle of 40°, and web thickness ratio of 0.2 can used to improve the drilling performance of the helical point micro-drill. Full article
(This article belongs to the Special Issue State-Of-The-Art Micromachining)
Show Figures

Figure 1

20 pages, 10493 KiB  
Article
Swept Mechanism of Micro-Milling Tool Geometry Effect on Machined Oxygen Free High Conductivity Copper (OFHC) Surface Roughness
by Zhenyu Shi, Zhanqiang Liu, Yuchao Li and Yang Qiao
Materials 2017, 10(2), 120; https://doi.org/10.3390/ma10020120 - 28 Jan 2017
Cited by 11 | Viewed by 5314
Abstract
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper [...] Read more.
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop