Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = ultrahigh frequency ultrasonic transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3521 KB  
Article
Fabrication of Radial Array Transducers Using 1-3 Composite via a Bending and Superposition Technique
by Chong Li, Jing Zhu and Ruimin Chen
Micromachines 2024, 15(11), 1363; https://doi.org/10.3390/mi15111363 - 11 Nov 2024
Viewed by 2504
Abstract
Piezoelectric composite materials, combining the advantages of both piezoelectric materials and polymers, have been extensively used in ultrasonic transducers. However, the pitch size of radial array ultrasonic transducers normally exceeds one wavelength, which limits their performance. In order to minimize grating lobes of [...] Read more.
Piezoelectric composite materials, combining the advantages of both piezoelectric materials and polymers, have been extensively used in ultrasonic transducers. However, the pitch size of radial array ultrasonic transducers normally exceeds one wavelength, which limits their performance. In order to minimize grating lobes of current radial transducers and then increase their imaging resolution, a 2.5 MHz 1-3 composite radial array transducer with 64 elements and 600 μm pitch was designed and fabricated by combining flexible circuit board and using a bending-and-superposition method. All the array elements were connected and actuated via the customized circuit board which is thin and soft. The kerf size is set to be 1/3 wavelength. PZT-5H/epoxy 1-3 composite was used as an active material because it exhibits an ultrahigh electromechanical coupling coefficient (kt = 0.74), a very low mechanical quality factor (Qm = 11), and relatively low acoustic impedance (Zc = 13.43 MRayls). The developed radial array transducer exhibited a center frequency of 2.72 MHz, an average −6 dB bandwidth of 36%, an insertion loss of 31.86 dB, and a crosstalk of −26.56 dB between the adjacent elements near the center frequency. These results indicate that the bending-and-superposition method is an effective way to fabricate radial array transducers by binding flexible circuit boards. Furthermore, the utilization of tailored flexible circuitry boards presents an effective approach for realizing reductions in crosstalk level (CTL). Full article
(This article belongs to the Collection Piezoelectric Transducers: Materials, Devices and Applications)
Show Figures

Figure 1

31 pages, 4193 KB  
Review
Realistic Aspects of Cardiac Ultrasound in Rats: Practical Tips for Improved Examination
by Jessica Silva, Tiago Azevedo, Mário Ginja, Paula A. Oliveira, José Alberto Duarte and Ana I. Faustino-Rocha
J. Imaging 2024, 10(9), 219; https://doi.org/10.3390/jimaging10090219 - 6 Sep 2024
Cited by 5 | Viewed by 6104
Abstract
Echocardiography is a reliable and non-invasive method for assessing cardiac structure and function in both clinical and experimental settings, offering valuable insights into disease progression and treatment efficacy. The successful application of echocardiography in murine models of disease has enabled the evaluation of [...] Read more.
Echocardiography is a reliable and non-invasive method for assessing cardiac structure and function in both clinical and experimental settings, offering valuable insights into disease progression and treatment efficacy. The successful application of echocardiography in murine models of disease has enabled the evaluation of disease severity, drug testing, and continuous monitoring of cardiac function in these animals. However, there is insufficient standardization of echocardiographic measurements for smaller animals. This article aims to address this gap by providing a guide and practical tips for the appropriate acquisition and analysis of echocardiographic parameters in adult rats, which may also be applicable in other small rodents used for scientific purposes, like mice. With advancements in technology, such as ultrahigh-frequency ultrasonic transducers, echocardiography has become a highly sophisticated imaging modality, offering high temporal and spatial resolution imaging, thereby allowing for real-time monitoring of cardiac function throughout the lifespan of small animals. Moreover, it allows the assessment of cardiac complications associated with aging, cancer, diabetes, and obesity, as well as the monitoring of cardiotoxicity induced by therapeutic interventions in preclinical models, providing important information for translational research. Finally, this paper discusses the future directions of cardiac preclinical ultrasound, highlighting the need for continued standardization to advance research and improve clinical outcomes to facilitate early disease detection and the translation of findings into clinical practice. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

13 pages, 6267 KB  
Article
Ultrasonic High-Resolution Imaging and Acoustic Tweezers Using Ultrahigh Frequency Transducer: Integrative Single-Cell Analysis
by Hayong Jung, K. Kirk Shung and Hae Gyun Lim
Sensors 2023, 23(4), 1916; https://doi.org/10.3390/s23041916 - 8 Feb 2023
Cited by 6 | Viewed by 4453
Abstract
Ultrasound imaging is a highly valuable tool in imaging human tissues due to its non-invasive and easily accessible nature. Despite advances in the field of ultrasound research, conventional transducers with frequencies lower than 20 MHz face limitations in resolution for cellular applications. To [...] Read more.
Ultrasound imaging is a highly valuable tool in imaging human tissues due to its non-invasive and easily accessible nature. Despite advances in the field of ultrasound research, conventional transducers with frequencies lower than 20 MHz face limitations in resolution for cellular applications. To address this challenge, we employed ultrahigh frequency (UHF) transducers and demonstrated their potential applications in the field of biomedical engineering, specifically for cell imaging and acoustic tweezers. The lateral resolution achieved with a 110 MHz UHF transducer was 20 μm, and 6.5 μm with a 410 MHz transducer, which is capable of imaging single cells. The results of our experiments demonstrated the successful imaging of a single PC-3 cell and a 15 μm bead using an acoustic scanning microscope equipped with UHF transducers. Additionally, the dual-mode multifunctional UHF transducer was used to trap and manipulate single cells and beads, highlighting its potential for single-cell studies in areas such as cell deformability and mechanotransduction. Full article
Show Figures

Figure 1

9 pages, 4198 KB  
Article
Ultrahigh Frequency Ultrasonic Transducers (150MHz) Based on Silicon Lenses
by Jun Chen, Chunlong Fei, Jianxin Zhao, Yi Quan, Yecheng Wang, Zhishui Jiang and Li Wen
Micromachines 2023, 14(1), 213; https://doi.org/10.3390/mi14010213 - 14 Jan 2023
Cited by 7 | Viewed by 3710
Abstract
Acoustic microscopes and acoustic tweezers have great value in the application of microparticle manipulation, biomedical research and non-destructive testing. Ultrahigh frequency (UHF) ultrasonic transducers act as the key component in acoustic microscopes, and acoustic tweezers and acoustic lenses are essential parts of UHF [...] Read more.
Acoustic microscopes and acoustic tweezers have great value in the application of microparticle manipulation, biomedical research and non-destructive testing. Ultrahigh frequency (UHF) ultrasonic transducers act as the key component in acoustic microscopes, and acoustic tweezers and acoustic lenses are essential parts of UHF ultrasonic transducers. Therefore, the preparation of acoustic lenses is crucial. Silicon is a suitable material for preparing acoustic lenses because of its high acoustic velocity, low acoustic attenuation and excellent machinability. In previous research, silicon lenses were mainly prepared by etching. However, etching has some drawbacks. The etching of large sizes is complex, time-consuming and expensive. Furthermore, vertical etching is preferred to spherical etching. Thus, a new method of ultra-precision machining was introduced to prepare silicon lenses. In this paper, silicon lenses with an aperture of 892 μm and a depth of 252 μm were prepared. Then, UHF ultrasonic transducers with a center frequency of 157 MHz and a −6-dB bandwidth of 52% were successfully prepared based on silicon lenses. The focal distance of the transducers was 736 μm and the F-number was about 0.82. The transducers had a lateral resolution of 11 μm and could distinguish the 13 μm slots on silicon wafers clearly. Full article
Show Figures

Figure 1

37 pages, 40496 KB  
Article
On-Line Partial Discharge Monitoring System for Power Transformers Based on the Simultaneous Detection of High Frequency, Ultra-High Frequency, and Acoustic Emission Signals
by Wojciech Sikorski, Krzysztof Walczak, Wieslaw Gil and Cyprian Szymczak
Energies 2020, 13(12), 3271; https://doi.org/10.3390/en13123271 - 24 Jun 2020
Cited by 45 | Viewed by 12532
Abstract
The article presents a novel on-line partial discharge (PD) monitoring system for power transformers, whose functioning is based on the simultaneous use of three unconventional methods of PD detection: high-frequency (HF), ultra-high frequency (UHF), and acoustic emission (AE). It is the first monitoring [...] Read more.
The article presents a novel on-line partial discharge (PD) monitoring system for power transformers, whose functioning is based on the simultaneous use of three unconventional methods of PD detection: high-frequency (HF), ultra-high frequency (UHF), and acoustic emission (AE). It is the first monitoring system equipped in an active dielectric window (ADW), which is a combined ultrasonic and electromagnetic PD sensor. The article discusses in detail the process of designing and building individual modules of hardware and software layers of the system, wherein the most attention was paid to the PD sensors, i.e., meandered planar inverted-F antenna (MPIFA), high-frequency current transformer (HFCT), and active dielectric window with ultrasonic transducer, which were optimized for detection of PDs occurring in oil-paper insulation. The prototype of the hybrid monitoring system was first checked on a 330 MVA large power transformer during the induced voltage test with partial discharge measurement (IVPD). Next, it was installed on a 31.5 MVA substation power transformer and integrated according to the standard IEC 61850 with SCADA (Supervisory Control and Data Acquisition) system registering voltage, active power, and oil temperature of the monitored unit. The obtained results showed high sensitivity of the manufactured PD sensors as well as the advantages of the simultaneous use of three techniques of PD detection and the possibility of discharge parameter correlation with other power transformer parameters. Full article
(This article belongs to the Special Issue Condition Monitoring and Diagnosis of Electrical Machines)
Show Figures

Figure 1

27 pages, 11676 KB  
Article
Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers
by Wojciech Sikorski
Energies 2019, 12(1), 115; https://doi.org/10.3390/en12010115 - 29 Dec 2018
Cited by 33 | Viewed by 7277
Abstract
The detection and location of partial discharge (PD) is of great significance in evaluating the insulation condition of power transformers. This paper presents an active dielectric window (ADW), which is a new concept of combined acoustic emission (AE) and electromagnetic PD detector intended [...] Read more.
The detection and location of partial discharge (PD) is of great significance in evaluating the insulation condition of power transformers. This paper presents an active dielectric window (ADW), which is a new concept of combined acoustic emission (AE) and electromagnetic PD detector intended for assembly in a transformer’s inspection hatch. The novelty of this design lies in the fact that all structural components of an ultrasonic transducer, i.e., the matching and backing layer, an active piezoelectric element with electrodes, and electrical leads, were built into a dielectric window. Due to the fact that its construction was optimized for work in mineral oil, it is characterized by much higher sensitivity of PD detection than a general-purpose AE sensor mounted outside a transformer tank. Laboratory tests showed that the amplitude of the AE pulses generated by creeping discharges, which were registered by the ADW, was around five times higher on average than the pulses registered by a commonly used contact transducer. A possibility of simultaneous detection of acoustic and electromagnetic pulses (with an integrated ultra-high frequency (UHF) antenna) is an important advantage of the ADW. It allows for an increase in the reliability of PD detection, the accuracy of defect location, and the effectiveness of disturbance identification. This paper describes in detail the applied methods of designing and modeling the ADW components, the manufacturing process of the prototype construction, and the results of preliminary laboratory tests, in which the detector’s sensitivity as well as the efficiency of the PD source location were evaluated. Full article
(This article belongs to the Special Issue Power Transformer Condition Assessment)
Show Figures

Figure 1

12 pages, 3334 KB  
Article
Ultrahigh Frequency Ultrasonic Transducers Design with Low Noise Amplifier Integrated Circuit
by Di Li, Chunlong Fei, Qidong Zhang, Yani Li, Yintang Yang and Qifa Zhou
Micromachines 2018, 9(10), 515; https://doi.org/10.3390/mi9100515 - 12 Oct 2018
Cited by 12 | Viewed by 7547
Abstract
This paper describes the design of an ultrahigh frequency ultrasound system combined with tightly focused 500 MHz ultrasonic transducers and high frequency wideband low noise amplifier (LNA) integrated circuit (IC) model design. The ultrasonic transducers are designed using Aluminum nitride (AlN) piezoelectric thin [...] Read more.
This paper describes the design of an ultrahigh frequency ultrasound system combined with tightly focused 500 MHz ultrasonic transducers and high frequency wideband low noise amplifier (LNA) integrated circuit (IC) model design. The ultrasonic transducers are designed using Aluminum nitride (AlN) piezoelectric thin film as the piezoelectric element and using silicon lens for focusing. The fabrication and characterization of silicon lens was presented in detail. Finite element simulation was used for transducer design and evaluation. A custom designed LNA circuit is presented for amplifying the ultrasound echo signal with low noise. A Common-source and Common-gate (CS-CG) combination structure with active feedback is adopted for the LNA design so that high gain and wideband performances can be achieved simultaneously. Noise and distortion cancelation mechanisms are also employed in this work to improve the noise figure (NF) and linearity. Designed by using a 0.35 μm complementary metal oxide semiconductor (CMOS) technology, the simulated power gain of the echo signal wideband amplifier is 22.5 dB at 500 MHz with a capacitance load of 1.0 pF. The simulated NF at 500 MHz is 3.62 dB. Full article
(This article belongs to the Special Issue MEMS Technology for Biomedical Imaging Applications)
Show Figures

Figure 1

11 pages, 1041 KB  
Article
An Ultra-High Element Density pMUT Array with Low Crosstalk for 3-D Medical Imaging
by Yi Yang, He Tian, Yu-Feng Wang, Yi Shu, Chang-Jian Zhou, Hui Sun, Cang-Hai Zhang, Hao Chen and Tian-Ling Ren
Sensors 2013, 13(8), 9624-9634; https://doi.org/10.3390/s130809624 - 26 Jul 2013
Cited by 58 | Viewed by 13514
Abstract
A ~1 MHz piezoelectric micromachined ultrasonic transducer (pMUT) array with ultra-high element density and low crosstalk is proposed for the first time. This novel pMUT array is based on a nano-layer spin-coating lead zirconium titanium film technique and can be fabricated with high [...] Read more.
A ~1 MHz piezoelectric micromachined ultrasonic transducer (pMUT) array with ultra-high element density and low crosstalk is proposed for the first time. This novel pMUT array is based on a nano-layer spin-coating lead zirconium titanium film technique and can be fabricated with high element density using a relatively simple process. Accordingly, key fabrication processes such as thick piezoelectric film deposition, low-stress Si-SOI bonding and bulk silicon removal have been successfully developed. The novel fine-pitch 6 × 6 pMUT arrays can all work at the desired frequency (~1 MHz) with good uniformity, high performance and potential IC integration compatibility. The minimum interspace is ~20 μm, the smallest that has ever been achieved to the best of our knowledge. These arrays can be potentially used to steer ultrasound beams and implement high quality 3-D medical imaging applications. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Show Figures

Back to TopTop