Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = typical type-II heterostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6121 KiB  
Article
A Novel Strategy for the Synthesis of High Stability of Luminescent Zero Dimensional–Two Dimensional CsPbBr3 Quantum Dot/1,4-bis(4-methylstyryl)benzene Nanoplate Heterostructures at an Atmospheric Condition
by Yanran Wang, Ming-yu Li, Shijie Liu, Yuan Ma, Bo Sun, Liangyu Wang, Haifei Lu, Xiaoyan Wen, Sisi Liu and Xumin Ding
Nanomaterials 2023, 13(19), 2723; https://doi.org/10.3390/nano13192723 - 7 Oct 2023
Cited by 3 | Viewed by 2067
Abstract
Perovskite quantum dots (QDs), emerging with excellent bright-green photoluminescence (PL) and a large absorption coefficient, are of great potential for the fabrication of light sources in underwater optical wireless communication systems. However, the instability caused by low formation energy and abundant surface traps [...] Read more.
Perovskite quantum dots (QDs), emerging with excellent bright-green photoluminescence (PL) and a large absorption coefficient, are of great potential for the fabrication of light sources in underwater optical wireless communication systems. However, the instability caused by low formation energy and abundant surface traps is still a major concern for perovskite-based light sources in underwater conditions. Herein, we propose ultra-stable zero dimensional–two dimensional (0D–2D) CsPbBr3 QD/1,4-bis(4-methylstyryl)benzene (p-MSB) nanoplate (NP) heterostructures synthesized via a facile approach at room temperature in air. CsPbBr3 QDs can naturally nucleate on the p-MSB NP toluene solution, and the radiative combination is drastically intensified owing to the electron transfer within the typical type-II heterostructures, leading to a sharply increased PLQY of the heterostructure thin films up to 200% compared with the pristine sample. The passivation of defects within CsPbBr3 QDs can be effectively realized with the existence of p-MSB NPs, and thus the obviously improved PL is steadily witnessed in an ambient atmosphere and thermal environment. Meanwhile, the enhanced humidity stability and a peak EQE of 9.67% suggests a synergetic strategy for concurrently addressing the knotty problems on unsatisfied luminous efficiency and stability of perovskites for high-performance green-emitting optoelectronic devices in underwater applications. Full article
(This article belongs to the Special Issue Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends)
Show Figures

Figure 1

12 pages, 3366 KiB  
Article
Investigations on Structural, Electronic and Optical Properties of MoS2/CDs Heterostructure via First-Principles Study
by Xianglu Yin, Aijun Teng, Zhi Chang, Peng Yuan, Dongbin Zhang and Jiyang Yu
Catalysts 2022, 12(5), 456; https://doi.org/10.3390/catal12050456 - 20 Apr 2022
Cited by 6 | Viewed by 2471
Abstract
Much effort has been made for MoS2/CDs heterostructure application in the field of photocatalysts. However, the impacts of functional groups of CDs on the properties of the heterostructure are ambiguous. Here, the impacts of hydroxyl, carbonyl, and carboxyl groups of CDs [...] Read more.
Much effort has been made for MoS2/CDs heterostructure application in the field of photocatalysts. However, the impacts of functional groups of CDs on the properties of the heterostructure are ambiguous. Here, the impacts of hydroxyl, carbonyl, and carboxyl groups of CDs on the structural, electronic, and optical properties of MoS2/CDs’ heterostructure were investigated by conducting a first-principles study. The calculated energy band structure and band gap of monolayer MoS2 were consistent with the experimental values. The band gap of MoS2 was obviously decreased after the construction of MoS2/CDs and MoS2/CDs–hydroxyl/carboxyl, thus helping to improve the light adsorption range. However, the band gap of MoS2/CDs–carbonyl was slightly increased compared with that of monolayer MoS2. The CDs with functional groups can spontaneously bind on 2D-MoS2 and form a stable MoS2/CDs heterostructure. It was confirmed that the MoS2/CDs’ heterostructure belongs to the typical type-II band alignment, which contributes to the separation of photogenerated charge and hole. Notably, the carbonyl and carboxyl groups on the CDs obviously reduced the optical absorption intensity of the MoS2/CDs in the ultraviolet region. The hydroxyl groups have little effect on optical absorption intensity. Thus, the CDs with more hydroxyl groups are beneficial to produce a higher photocatalytic performance. This paper reveals the impacts of surface functional groups and provides a promising approach for designing the MoS2/CDs’ heterostructure to enhance the photocatalytic properties. Full article
Show Figures

Figure 1

11 pages, 2271 KiB  
Article
Photodetection Tuning with High Absorptivity Using Stacked 2D Heterostructure Films
by Umar Farooq, Kossi A. A. Min-Dianey, Pandey Rajagopalan, Muhammad Malik, Damgou Mani Kongnine, Jeong Ryeol Choi and Phuong V. Pham
Nanomaterials 2022, 12(4), 712; https://doi.org/10.3390/nano12040712 - 21 Feb 2022
Cited by 9 | Viewed by 3008
Abstract
Graphene-based photodetection (PD) devices have been broadly studied for their broadband absorption, high carrier mobility, and mechanical flexibility. Owing to graphene’s low optical absorption, the research on graphene-based PD devices so far has relied on hybrid heterostructure devices to enhance photo-absorption. Designing a [...] Read more.
Graphene-based photodetection (PD) devices have been broadly studied for their broadband absorption, high carrier mobility, and mechanical flexibility. Owing to graphene’s low optical absorption, the research on graphene-based PD devices so far has relied on hybrid heterostructure devices to enhance photo-absorption. Designing a new generation of PD devices supported by silicon (Si) film is considered as an innovative technique for PD devices; Si film-based devices are typically utilized in optical communication and image sensing owing to the remarkable features of Si, e.g., high absorption, high carrier mobility, outstanding CMOS integration. Here, we integrate (i) Si film via a splitting/printing transfer with (ii) graphite film grown by a pyrolysis method. Consequently, p-type Si film/graphite film/n-type Si-stacked PD devices exhibited a broadband detection of 0.4–4 μm (in computation) and obtained good experimental results such as the responsivity of 100 mA/W, specific detectivity of 3.44 × 106 Jones, noise-equivalent power of 14.53 × 10−10 W/(Hz)1/2, external quantum efficiency of 0.2, and rise/fall time of 38 μs/1 μs under 532 nm laser illumination. Additionally, our computational results also confirmed an enhanced light absorption of the above stacked 2D heterostructure film-based PD device compatible with the experimental results. Full article
Show Figures

Graphical abstract

12 pages, 2386 KiB  
Article
Two-Dimensional As/BlueP van der Waals Hetero-Structure as a Promising Photocatalyst for Water Splitting: A DFT Study
by Xinyi Liu, Bei Jiang, Yanxin Liu, Lei Liu, Tian Xia, Xin Zhang, Cong Ye, Yunjin Yu and Bin Wang
Coatings 2020, 10(12), 1160; https://doi.org/10.3390/coatings10121160 - 27 Nov 2020
Cited by 14 | Viewed by 3179
Abstract
Constructing van der Waals (vdW) hetero-structure by stacking different two-dimensional (2D) materials has become an effective method for designing new-type and high-quality electronic and optoelectronic nano-devices. In this work, we designed a 2D As/BlueP vdW hetero-structure by stacking monolayer arsenene (As) and monolayer [...] Read more.
Constructing van der Waals (vdW) hetero-structure by stacking different two-dimensional (2D) materials has become an effective method for designing new-type and high-quality electronic and optoelectronic nano-devices. In this work, we designed a 2D As/BlueP vdW hetero-structure by stacking monolayer arsenene (As) and monolayer blue phosphorous (BlueP) vertically, which were recently implemented in experiments, and investigated its structural, electronic, and photocatalytic water splitting properties by using the standard first principles calculation method with HSE06 hybrid exchange-correlation functional. Numerical results show that the As/BlueP vdW hetero-structure is structural robust, even at room temperature. It presents semi-conducting behavior, and the conduction band minimum (CBM) and the valence band maximum (VBM) are dominated by BlueP and As, respectively. The typical type-II band alignment predicts the potential application of the hetero-structure in highly efficient optoelectronics and solar energy conversion. Moreover, the CBM and the VBM straddle the redox potentials of water in acid environment, predicting the possibility of the As/BlueP hetero-structure as a 2D photocatalyst for water splitting. When an in-plane strain is applied, the band edges and, further, the optoelectronic properties of the hetero-structure can be effectively tuned. Especially, when tensile strain is equal to 4.5%, the optical absorption spectrum is effectively broadened in a visible light region, which will largely improve its photocatalytic efficiency, although the pH value of the solution range reduction. This work provides theoretical evidence that the As/BlueP hetero-structure has potential application as a 2D photocatalyst in water splitting. Full article
Show Figures

Figure 1

Back to TopTop