Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = two-stage entrained-flow gasifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11800 KB  
Article
Numerical Simulations of Gasification of Low-Grade Coal and Lignocellulosic Biomasses in Two-Stage Multi-Opposite Burner Gasifier
by Anees u Rehman, Imran Nazir Unar, Masroor Abro, Khadija Qureshi, Sikandar Almani and Abdul Sattar Jatoi
Processes 2023, 11(12), 3451; https://doi.org/10.3390/pr11123451 - 18 Dec 2023
Cited by 2 | Viewed by 1848
Abstract
Thermochemical processes utilizing biomass demonstrate promising prospects for the generation of syngas. In this work, a gasification process employing combination of an indigenous low-grade coal with two distinct biomass sources, namely rice husk (RH) and wood sawdust (WS), was explored. The gasification of [...] Read more.
Thermochemical processes utilizing biomass demonstrate promising prospects for the generation of syngas. In this work, a gasification process employing combination of an indigenous low-grade coal with two distinct biomass sources, namely rice husk (RH) and wood sawdust (WS), was explored. The gasification of the selected feedstock was performed using a double-staged multi-opposite burner (MOB) gasifier. A 3D computational fluid dynamics (CFD) model was employed to analyze the effect of kinetic and diffusion rates on the overall gasification performance of an entrained flow biomass gasifier. DPM was employed to track the particles’ trajectory, while the gas phase was treated as the continuous phase, and its behavior was predicted using a standard k-epsilon turbulent model. To calculate both the homogeneous and heterogeneous reaction rates, the finite rate/eddy dissipation model was implemented. The findings indicate that the char conversion efficiency exceeded 95% across all instances. Among the different reaction schemes, scheme E (which involved complete volatile and char combustion reactions) produced better results in comparison with published results, with less than 1% error. Hence, scheme E was validated and utilized for the rest of the simulated cases. The feeding rate has an inverse effect on the overall performance of the gasifier. An increase in feed rate decreases the CO and H2 composition in syngas. The maximum CO value was observed to be 57.59% at a 1.0 O/C ratio with a 0.005 kg/s feed rate, and the maximum H2 value was observed to be 16.58% in the same conditions for Lakhra coal samples. In summary, Lakhra coal exhibited better performance than other biomass samples due to its better fixed carbon and volatiles in its composition. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 1595 KB  
Article
Experimental Study on Coal Gasification in a Full-Scale Two-Stage Entrained-Flow Gasifier
by Guangyu Li, Luping Wang, Chaowei Wang, Chang’an Wang, Ping Wu and Defu Che
Energies 2020, 13(18), 4937; https://doi.org/10.3390/en13184937 - 21 Sep 2020
Cited by 9 | Viewed by 3655
Abstract
In this paper, coal gasification characteristics in the reductor were investigated in a full-scale two-stage pressurized entrained-flow gasifier, which has been seldom conducted previously. The present study aimed at elucidating the effects of gasifying agent concentration, coal input rate, and operation period under [...] Read more.
In this paper, coal gasification characteristics in the reductor were investigated in a full-scale two-stage pressurized entrained-flow gasifier, which has been seldom conducted previously. The present study aimed at elucidating the effects of gasifying agent concentration, coal input rate, and operation period under full reductor load on the performance of a utility two-stage pressurized entrained-flow gasifier for the first time. When the steam input in the combustor was raised from 3318 kg/h to 5722 kg/h, the total outputs of H2, CO, and CO2 were increased by 1765 Nm3/h and 2063 Nm3/h, respectively, while the CH4 output was decreased by 49 Nm3/h. The coal conversion rate was minimal at low steam input. In addition, more coal gasified in the reductor could increase the output of CH4, while CH4 could reach 1.24% with the coal input in the range of 8000–10,000 kg/h. The present work can offer a further understanding of the gasification performance in the reductor of the full-scale two-stage pressurized entrained-flow gasifier, and motivates the potential for clean utilization of coal resource. Full article
(This article belongs to the Special Issue Clean Utilization and Conversion Technology of Coal)
Show Figures

Figure 1

Back to TopTop