Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = two-stage auction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4025 KB  
Article
Blockchain-Based UAV-Assisted Mobile Edge Computing for Dual Game Resource Allocation
by Shanchen Pang, Yu Tang, Xue Zhai, Siyuan Tong and Zhenghao Wan
Appl. Sci. 2025, 15(7), 4048; https://doi.org/10.3390/app15074048 - 7 Apr 2025
Cited by 3 | Viewed by 1988
Abstract
UAV-assisted mobile edge computing combines the flexibility of UAVs with the computing power of MEC to provide low-latency, high-performance computing solutions for a wide range of application scenarios. However, due to the highly dynamic and heterogeneous nature of the UAV environment, the optimal [...] Read more.
UAV-assisted mobile edge computing combines the flexibility of UAVs with the computing power of MEC to provide low-latency, high-performance computing solutions for a wide range of application scenarios. However, due to the highly dynamic and heterogeneous nature of the UAV environment, the optimal allocation of resources and system reliability still face significant challenges. This paper proposes a two-stage optimization (DSO) algorithm for UAV-assisted MEC, combining Stackelberg game theory and auction mechanisms to optimize resource allocation among servers, UAVs, and users. The first stage uses a Stackelberg game to allocate resources between servers and UAVs, while the second stage employs an auction algorithm for UAV-user resource pricing. Blockchain smart contracts automate task management, ensuring transparency and reliability. The experimental results show that compared with the traditional single-stage optimization algorithm (SSO), the equal allocation algorithm (EAA) and the dynamic resource pricing algorithm (DRP), the DSO algorithm proposed in this paper has significant advantages by improving resource utilization by 7–10%, reducing task latency by 3–5%, and lowering energy consumption by 4–8%, making it highly effective for dynamic UAV environments. Full article
Show Figures

Figure 1

21 pages, 1242 KB  
Article
Design of a Stochastic Electricity Market Mechanism with a High Proportion of Renewable Energy
by Yifeng Liu, Meng Chen, Yuhong Fan, Liming Ying, Xue Cui and Xuyue Zou
Energies 2024, 17(12), 3044; https://doi.org/10.3390/en17123044 - 20 Jun 2024
Cited by 2 | Viewed by 1882
Abstract
Renewable energy, such as wind power and photovoltaic power, has uncertain and intermittent characteristics and zero marginal cost characteristics. The traditional power market mechanism is difficult to adapt to the new power system with a high proportion of renewable energy, and the original [...] Read more.
Renewable energy, such as wind power and photovoltaic power, has uncertain and intermittent characteristics and zero marginal cost characteristics. The traditional power market mechanism is difficult to adapt to the new power system with a high proportion of renewable energy, and the original market system needs to be reformed. This paper discusses the application of a VCG auction mechanism in the electricity market, proposes a two-stage VCG market-clearing model based on the VCG mechanism, including the day-ahead market and the real-time market, and discusses the nature of the VCG mechanism. In order to address the discrepancy between the actual output of stochastic generator sets in the real-time market and their pre-scheduled output in the day-ahead market due to prediction deviations, a method for calculating punitive costs is proposed. A reallocation method based on market entities’ contributing factors to budget imbalance is proposed to address the issue of budget imbalance under the VCG mechanism, in order to achieve revenue and expenditure balance. Through an example, the incentive compatibility characteristics of the VCG mechanism are verified, the problems of the locational marginal pricing (LMP) mechanism in the stochastic electricity market with a high proportion of renewable energy are analyzed, the electricity prices of the LMP mechanism and the VCG mechanism under different renewable energy proportions are compared, and the redistribution of the budget imbalance of the VCG mechanism is analyzed. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

12 pages, 1917 KB  
Article
An Effective Two-Stage Algorithm for the Bid Generation Problem in the Transportation Service Market
by Shiying Liu, Fang Yang, Tailin Liu and Mengli Li
Mathematics 2024, 12(7), 1007; https://doi.org/10.3390/math12071007 - 28 Mar 2024
Cited by 4 | Viewed by 1606
Abstract
This study designs a two-stage algorithm to address the bid generation problem of carriers when adding new vehicle routes in the presence of the existing vehicle routes to provide transportation service. To obtain the best auction combination and bid price of the carrier, [...] Read more.
This study designs a two-stage algorithm to address the bid generation problem of carriers when adding new vehicle routes in the presence of the existing vehicle routes to provide transportation service. To obtain the best auction combination and bid price of the carrier, a hybrid integer nonlinear programming model is introduced. According to the characteristics of the problem, a set of two-stage hybrid algorithms is proposed, innovatively integrating block coding within a genetic algorithm framework with a depth-first search approach. This integration effectively manages routing constraints, enhancing the algorithm’s efficiency. The block coding and each route serve as decision variables in the set partition formula, enabling a comprehensive exploration of potential solutions. After a simulation-based analysis, the algorithm has been comprehensively validated analytically and empirically. The improvement of this research lies in the effectiveness of the proposed algorithm, i.e., the ability to handle a broader range of problem scales with less time in addressing complex operator bid generation in combinatorial auctions. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Graphical abstract

17 pages, 7612 KB  
Article
A Two-Stage Auction Mechanism for 3PL Supplier Selection under Risk Aversion
by Fuqiang Lu, Hualing Bi, Wenjing Feng, Yanli Hu, Suxin Wang and Xu Zhang
Sustainability 2021, 13(17), 9745; https://doi.org/10.3390/su13179745 - 30 Aug 2021
Cited by 14 | Viewed by 2815
Abstract
The third party logistics (3PL) suppliers selection is a key issue in sustainable operation of fourth party logistics (4PL). A two-stage auction mechanism is designed for the selection of 3PL suppliers. Different from previous studies, the paper considers risk preference of 4PL integrators [...] Read more.
The third party logistics (3PL) suppliers selection is a key issue in sustainable operation of fourth party logistics (4PL). A two-stage auction mechanism is designed for the selection of 3PL suppliers. Different from previous studies, the paper considers risk preference of 4PL integrators during the auction and uses the prospect theory to establish the auction scoring function of 4PL integrators. First, a first score sealed auction (FSSA) mechanism is used to solve the selection problem. However, the results show that FSSA is not an ideal method. Hence, the English auction (EA) mechanism is combined with the FSSA mechanism to form a two-stage auction. The FSSA is taken as the first stage auction, and the EA is taken as the second stage auction, and the two-stage auction mechanism is constructed. The two-stage auction can improve the utility of the 4PL integrator and the auction efficiency. In addition, for the degree of disclosure of attribute weights in the scoring function, two states, complete information and incomplete information is designed. In case analysis, the validity of the designed two-stage auction mechanism is verified. The 4PL integrator can obtain higher utility under the risk-neutral auction than the risk-averse auction. The complete information auction does not make the 4PL integrator obtain higher utility than the incomplete information auction. Full article
(This article belongs to the Special Issue Risk Theory Applications in Sustainable Economy)
Show Figures

Figure 1

18 pages, 2645 KB  
Article
Research and Application of Continuous Bidirectional Trading Mechanism in Yunnan Electricity Market
by Xuguang Yu, Gang Li, Chuntian Cheng, Yongjun Sun and Ran Chen
Energies 2019, 12(24), 4663; https://doi.org/10.3390/en12244663 - 8 Dec 2019
Cited by 8 | Viewed by 3676
Abstract
To further promote market competition, enrich trading varieties, alleviate information asymmetry, and improve trading efficiency during electricity market reform in China, the continuous bidirectional transaction (CBT) was designed and applied in the Yunnan electricity market (YNEM), which is dominated by medium- and long-term [...] Read more.
To further promote market competition, enrich trading varieties, alleviate information asymmetry, and improve trading efficiency during electricity market reform in China, the continuous bidirectional transaction (CBT) was designed and applied in the Yunnan electricity market (YNEM), which is dominated by medium- and long-term power energy trading. The clearing model for the CBT with the goal of maximum social welfare is proposed in two bidding stages, including call auction (CA) and continuous double auction (CDA). Correspondingly, the integrated two-stage market clearing algorithm is also introduced to ensure the data consistency and business continuity. Finally, the analysis of the practical application shows that the proposed model, algorithm, and various key implementation strategies of the trading platform support the bidding and clearing of the CBT well. In addition, the research and application of CBT may also provide valuable insights for other electricity market construction. Full article
(This article belongs to the Special Issue Market Design for a High-Renewables Electricity System)
Show Figures

Figure 1

19 pages, 3490 KB  
Article
Integrated Energy Transaction Mechanisms Based on Blockchain Technology
by Shengnan Zhao, Beibei Wang, Yachao Li and Yang Li
Energies 2018, 11(9), 2412; https://doi.org/10.3390/en11092412 - 12 Sep 2018
Cited by 66 | Viewed by 7253
Abstract
With the rapid development of distributed renewable energy (DRE), demand response (DR) programs, and the proposal of the energy internet, the current centralized trading of the electricity market model is unable to meet the trading needs of distributed energy. As a decentralized and [...] Read more.
With the rapid development of distributed renewable energy (DRE), demand response (DR) programs, and the proposal of the energy internet, the current centralized trading of the electricity market model is unable to meet the trading needs of distributed energy. As a decentralized and distributed accounting mode, blockchain technology fits the requirements of distributed energy to participate in the energy market. Corresponding to the transaction principle, a blockchain-based integrated energy transaction mechanism is proposed, which divides the trading process into two stages: the call auction stage and the continues auction stage. The transactions among the electricity and heat market participants were used as examples to explain the details of the trading process. Finally, the smart contracts of the transactions were designed and deployed on the Ethereum private blockchain site to demonstrate the validity of the proposed transaction scheme. Full article
(This article belongs to the Special Issue Communications in Microgrids)
Show Figures

Figure 1

21 pages, 1281 KB  
Article
Staged Incentive and Punishment Mechanism for Mobile Crowd Sensing
by Dan Tao, Shan Zhong and Hong Luo
Sensors 2018, 18(7), 2391; https://doi.org/10.3390/s18072391 - 23 Jul 2018
Cited by 8 | Viewed by 4897
Abstract
Having an incentive mechanism is crucial for the recruitment of mobile users to participate in a sensing task and to ensure that participants provide high-quality sensing data. In this paper, we investigate a staged incentive and punishment mechanism for mobile crowd sensing. We [...] Read more.
Having an incentive mechanism is crucial for the recruitment of mobile users to participate in a sensing task and to ensure that participants provide high-quality sensing data. In this paper, we investigate a staged incentive and punishment mechanism for mobile crowd sensing. We first divide the incentive process into two stages: the recruiting stage and the sensing stage. In the recruiting stage, we introduce the payment incentive coefficient and design a Stackelberg-based game method. The participants can be recruited via game interaction. In the sensing stage, we propose a sensing data utility algorithm in the interaction. After the sensing task, the winners can be filtered out using data utility, which is affected by time–space correlation. In particular, the participants’ reputation accumulation can be carried out based on data utility, and a punishment mechanism is presented to reduce the waste of payment costs caused by malicious participants. Finally, we conduct an extensive study of our solution based on realistic data. Extensive experiments show that compared to the existing positive auction incentive mechanism (PAIM) and reverse auction incentive mechanism (RAIM), our proposed staged incentive mechanism (SIM) can effectively extend the incentive behavior from the recruiting stage to the sensing stage. It not only achieves being a real-time incentive in both the recruiting and sensing stages but also improves the utility of sensing data. Full article
Show Figures

Figure 1

19 pages, 888 KB  
Article
Worst-Case Cooperative Jamming for Secure Communications in CIoT Networks
by Zhen Li, Tao Jing, Liran Ma, Yan Huo and Jin Qian
Sensors 2016, 16(3), 339; https://doi.org/10.3390/s16030339 - 7 Mar 2016
Cited by 23 | Viewed by 7180
Abstract
The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. Yet, the use of a large number of IoT devices can severely worsen the spectrum scarcity problem. The usable spectrum resources are almost entirely [...] Read more.
The Internet of Things (IoT) is a significant branch of the ongoing advances in the Internet and mobile communications. Yet, the use of a large number of IoT devices can severely worsen the spectrum scarcity problem. The usable spectrum resources are almost entirely occupied, and thus, the increasing demands of radio access from IoT devices cannot be met. To tackle this problem, the Cognitive Internet of Things (CIoT) has been proposed. In a CIoT network, secondary users, i.e., sensors and actuators, can access the licensed spectrum bands provided by licensed primary users (such as cellular telephones). Security is a major concern in CIoT networks. However, the traditional encryption method at upper layers (such as symmetric and asymmetric ciphers) may not be suitable for CIoT networks since these networks are composed of low-profile devices. In this paper, we address the security issues in spectrum-leasing-based CIoT networks using physical layer methods. Considering that the CIoT networks are cooperative in nature, we propose to employ cooperative jamming to achieve secure transmission. In our proposed cooperative jamming scheme, a certain secondary user is employed as the helper to harvest energy transmitted by the source and then uses the harvested energy to generate an artificial noise that jams the eavesdropper without interfering with the legitimate receivers. The goal is to minimize the Signal to Interference plus Noise Ratio (SINR) at the eavesdropper subject to the Quality of Service (QoS) constraints of the primary traffic and the secondary traffic. We formulate the minimization problem into a two-stage robust optimization problem based on the worst-case Channel State Information of the Eavesdropper (ECSI). By using Semi-Definite Programming (SDP), the optimal solutions of the transmit covariance matrices can be obtained. Moreover, in order to build an incentive mechanism for the secondary users, we propose an auction framework based on the cooperative jamming scheme. The proposed auction framework jointly formulates the helper selection and the corresponding energy allocation problems under the constraint of the eavesdropper's SINR. By adopting the Vickrey auction, truthfulness and individual rationality can be achieved. Simulation results demonstrate the effective performance of the cooperative jamming scheme and the auction framework. Full article
(This article belongs to the Special Issue Identification, Information & Knowledge in the Internet of Things)
Show Figures

Figure 1

Back to TopTop