Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = two-ply membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4765 KiB  
Article
In Vitro Evaluation of the Antibacterial Properties and Cellular Response of Liquid-Leukocyte Platelet-Rich Fibrin Products on Barrier Membranes: A Pilot Study
by Nichol Chun Wai Tsang, Aneesha Acharya and Georgios Pelekos
Dent. J. 2025, 13(6), 228; https://doi.org/10.3390/dj13060228 - 22 May 2025
Viewed by 483
Abstract
Background: Barrier membranes (BMs) have been used in dental surgical procedures for decades, but their exposure can increase the risk of infections and compromise healing from regenerative procedures. Liquid-leukocyte platelet-rich fibrin (LPRF) products have shown antimicrobial effects and enhance wound healing. This in [...] Read more.
Background: Barrier membranes (BMs) have been used in dental surgical procedures for decades, but their exposure can increase the risk of infections and compromise healing from regenerative procedures. Liquid-leukocyte platelet-rich fibrin (LPRF) products have shown antimicrobial effects and enhance wound healing. This in vitro study aimed to evaluate the antimicrobial effects and cellular responses of LPRF products as adjunctive treatments for barrier membranes, hypothesizing that the two liquid LPRF products could improve antibacterial activity against selected oral pathogen species and augment human gingival fibroblast cellular proliferation on BM. Methods: LPRF exudate (LPRF-EX) and liquid fibrinogen (PLyf), human LPRF products, were prepared with recommended centrifugation protocols and used to treat resorbable (Bio-gide®) and non-resorbable (Cyto-plast™) BMs. Human gingival fibroblasts (HGFs) were cultured on the treated and untreated BMs. Scanning electron microscopy (SEM) was applied to observe cell adhesion, and CCK-8 assays were used to study cell proliferation. Oral P. gingivalis and A. naeslundii were incubated with the BMs. Bacterial adhesion was visualized using SEM, and colony-forming unit (CFU) counts were obtained. Results: SEM images showed markedly greater fibrin network formation after 7 days on resorbable BM (Bio-gide®) treated with PLyF, but with no notable differences in other resorbable BM or non-resorbable BM groups with both treatments. CCK-8 assays showed non-significant effects on HGF proliferation at 3 and 5 days. SEM showed A. naeslundii growth inhibition in the LPRF-EX- and PLyf-treated BMs, and the greatest reduction in CFU counts of both P. gingivalis and A. naeslundii was noted with treated Cytoplast™. Conclusions: Within the limitations of this preliminary study, it can be concluded that the LPRF-EX and PLyf treatment of BM induced an antimicrobial effect. Their effects on cellular response were unclear due to the lack of significant findings on SEM analysis. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

11 pages, 957 KiB  
Article
Five Years’ Experience with Gene Panel Sequencing in Hereditary Hemolytic Anemia Screened by Routine Peripheral Blood Smear Examination
by Namsu Kim, Tae Yun Kim, Ji Yoon Han and Joonhong Park
Diagnostics 2023, 13(4), 770; https://doi.org/10.3390/diagnostics13040770 - 17 Feb 2023
Cited by 2 | Viewed by 2986
Abstract
Background: Hereditary hemolytic anemia (HHA) is defined as a group of heterogeneous and rare diseases caused by defects of red blood cell (RBC) metabolism and RBC membrane, which leads to lysis or premature clearance. The aim of this study was to investigate individuals [...] Read more.
Background: Hereditary hemolytic anemia (HHA) is defined as a group of heterogeneous and rare diseases caused by defects of red blood cell (RBC) metabolism and RBC membrane, which leads to lysis or premature clearance. The aim of this study was to investigate individuals with HHA for potential disease-causing variants in 33 genes reported to be associated with HHA. Methods: A total of 14 independent individuals or families diagnosed with suspected HHA, and in particular, RBC membranopathy, RBC enzymopathy, and hemoglobinopathy, were collected after routine peripheral blood smear testing. A custom designed panel, including the 33 genes, was performed using gene panel sequencing on the Ion Torrent PGM™ Dx System. The best candidate disease-causing variants were confirmed by Sanger sequencing. Results: Several variants of the HHA-associated genes were detected in 10 out of 14 suspected HHA individuals. After excluding those variants predicted to be benign, 10 pathogenic variants and 1 variant of uncertain significance (VUS) were confirmed in 10 individuals with suspected HHA. Of these variants, the p.Trp704Ter nonsense variant of EPB41 and missense p.Gly151Asp variant of SPTA1 were identified in two out of four hereditary elliptocytoses. The frameshift p.Leu884GlyfsTer27 variant of ANK1, nonsense p.Trp652Ter variant of the SPTB, and missense p.Arg490Trp variant of PKLR were detected in all four hereditary spherocytosis cases. Missense p.Glu27Lys, nonsense p.Lys18Ter variants, and splicing errors such as c.92 + 1G > T and c.315 + 1G > A within HBB were identified in four beta thalassemia cases. Conclusions: This study provides a snapshot of the genetic alterations in a cohort of Korean HHA individuals and demonstrates the clinical utility of using gene panels in HHA. Genetic results can provide precise clinical diagnosis and guidance regarding medical treatment and management for some individuals. Full article
(This article belongs to the Special Issue Hematology: Diagnosis and Management)
Show Figures

Figure 1

14 pages, 6790 KiB  
Article
Positive Aspects of Green Roof Reducing Energy Consumption in Winter
by Peter Juras
Energies 2022, 15(4), 1493; https://doi.org/10.3390/en15041493 - 17 Feb 2022
Cited by 15 | Viewed by 2915
Abstract
Greening structures attract worldwide attention because of their multidisciplinary benefits. Green roofs are considered one of the best ways to eliminate summer overheating, mitigate climate change, or reduce the urban heat island effect. The winter season and its impact on building energy consumption [...] Read more.
Greening structures attract worldwide attention because of their multidisciplinary benefits. Green roofs are considered one of the best ways to eliminate summer overheating, mitigate climate change, or reduce the urban heat island effect. The winter season and its impact on building energy consumption are often overlooked. Common standards do not take a green roof structure into consideration because of possible high water content in their layers. Additional roof layers may have a positive effect during the winter; they help reduce surface overcooling in cloudless winter nights. This paper analyses experimental measurements taken on two different extensive green roofs and compares the results with a single-ply roof (R) with a PVC membrane. Surface overcooling of the R due to radiation reaching up to 10 °C, whereas the green roof membrane is protected. The influence of thermal loss is not so important for the current climate in Central Europe, as the required U-values are lower than 0.1. The temperature difference is reduced from 17 °C on the membrane to 0.7 °C on the top of the concrete slab. The green roof is still advantageous, and the vegetation surface has better thermal stability. The advantage is clearly recognisable in the area of the condensation zone. The difference between these two extensive green roofs is very small in regard to the accuracy of the temperature sensors. The outcome showed the thermal loss reduction compared to the common flat roof; however, after analysis, it was more marginal than expected. Full article
Show Figures

Figure 1

13 pages, 25432 KiB  
Article
Effects of Bioinsecticidal Aegerolysin-Based Cytolytic Complexes on Non-Target Organisms
by Anastasija Panevska, Gordana Glavan, Anita Jemec Kokalj, Veronika Kukuljan, Tomaž Trobec, Monika Cecilija Žužek, Milka Vrecl, Damjana Drobne, Robert Frangež and Kristina Sepčić
Toxins 2021, 13(7), 457; https://doi.org/10.3390/toxins13070457 - 30 Jun 2021
Cited by 8 | Viewed by 3900
Abstract
Aegerolysin proteins ostreolysin A6 (OlyA6), pleurotolysin A2 (PlyA2) and erylysin A (EryA) produced by the mushroom genus Pleurotus bind strongly to an invertebrate-specific membrane sphingolipid, and together with a protein partner pleurotolysin B (PlyB), form transmembrane pore complexes. This pore formation is the [...] Read more.
Aegerolysin proteins ostreolysin A6 (OlyA6), pleurotolysin A2 (PlyA2) and erylysin A (EryA) produced by the mushroom genus Pleurotus bind strongly to an invertebrate-specific membrane sphingolipid, and together with a protein partner pleurotolysin B (PlyB), form transmembrane pore complexes. This pore formation is the basis for the selective insecticidal activity of aegerolysin/PlyB complexes against two economically important coleopteran pests: the Colorado potato beetle and the western corn rootworm. In this study, we evaluated the toxicities of these aegerolysin/PlyB complexes using feeding tests with two ecologically important non-target arthropod species: the woodlouse and the honey bee. The mammalian toxicity of the EryA/PlyB complex was also evaluated after intravenous administration to mice. None of the aegerolysin/PlyB complexes were toxic against woodlice, but OlyA6/PlyB and PlyA2/PlyB were toxic to honeybees, with 48 h mean lethal concentrations (LC50) of 0.22 and 0.39 mg/mL, respectively, in their food. EryA/PlyB was also tested intravenously in mice up to 3 mg/kg body mass, without showing toxicity. With no toxicity seen for EryA/PlyB for environmentally beneficial arthropods and mammals at the tested concentrations, these EryA/PlyB complexes are of particular interest for development of new bioinsecticides for control of selected coleopteran pests. Full article
Show Figures

Graphical abstract

12 pages, 2314 KiB  
Article
Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide)
by Svetlana V. Kononova, Elena V. Kruchinina, Valentina A. Petrova, Yulia G. Baklagina, Kira A. Romashkova, Anton S. Orekhov, Vera V. Klechkovskaya and Yury A. Skorik
Molecules 2017, 22(12), 2227; https://doi.org/10.3390/molecules22122227 - 14 Dec 2017
Cited by 7 | Viewed by 4127
Abstract
Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide) and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the [...] Read more.
Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide) and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol) mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH3+ for chitosan and -SO3 for sulfoethylcellulose) show high permselectivity (the water content in the permeate was 100%). Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes. Full article
Show Figures

Figure 1

10 pages, 274 KiB  
Review
Ostreolysin A/Pleurotolysin B and Equinatoxins: Structure, Function and Pathophysiological Effects of These Pore-Forming Proteins
by Robert Frangež, Dušan Šuput, Jordi Molgó and Evelyne Benoit
Toxins 2017, 9(4), 128; https://doi.org/10.3390/toxins9040128 - 5 Apr 2017
Cited by 8 | Viewed by 5183
Abstract
Acidic ostreolysin A/pleurotolysin B (OlyA/PlyB, formerly known as ostreolysin (Oly), and basic 20 kDa equinatoxins (EqTs) are cytolytic proteins isolated from the edible mushroom Pleurotus ostreatus and the sea anemone Actinia equina, respectively. Both toxins, although from different sources, share many similar [...] Read more.
Acidic ostreolysin A/pleurotolysin B (OlyA/PlyB, formerly known as ostreolysin (Oly), and basic 20 kDa equinatoxins (EqTs) are cytolytic proteins isolated from the edible mushroom Pleurotus ostreatus and the sea anemone Actinia equina, respectively. Both toxins, although from different sources, share many similar biological activities: (i) colloid-osmotic shock by forming pores in cellular and artificial membranes enriched in cholesterol and sphingomyelin; (ii) increased vascular endothelial wall permeability in vivo and perivascular oedema; (iii) dose-dependent contraction of coronary vessels; (iv) haemolysis with pronounced hyperkalaemia in vivo; (v) bradycardia, myocardial ischemia and ventricular extrasystoles accompanied by progressive fall of arterial blood pressure and respiratory arrest in rodents. Both types of toxins are haemolytic within nanomolar range concentrations, and it seems that hyperkalaemia plays an important role in toxin cardiotoxicity. However, it was observed that the haemolytically more active EqT III is less toxic than EqT I, the most toxic and least haemolytic EqT. In mice, EqT II is more than 30 times more toxic than OlyA/PlyB when applied intravenously. These observations imply that haemolysis with hyperkalaemia is not the sole cause of the lethal activity of both toxins. Additional mechanisms responsible for lethal action of the two toxins are direct effects on heart, coronary vasoconstriction and related myocardial hypoxia. In this review, we appraise the pathophysiological mechanisms related to the chemical structure of OlyA/PlyB and EqTs, as well as their toxicity. Full article
(This article belongs to the Section Bacterial Toxins)
Back to TopTop