Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = two-chamber photoacoustic sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4272 KiB  
Article
Towards a Miniaturized Photoacoustic Sensor for Transcutaneous CO2 Monitoring
by Mahmoud El-Safoury, Christian Weber, Hassan Yassine, Jürgen Wöllenstein and Katrin Schmitt
Sensors 2024, 24(2), 457; https://doi.org/10.3390/s24020457 - 11 Jan 2024
Cited by 5 | Viewed by 2985
Abstract
A photoacoustic sensor system (PAS) intended for carbon dioxide (CO2) blood gas detection is presented. The development focuses on a photoacoustic (PA) sensor based on the so-called two-chamber principle, i.e., comprising a measuring cell and a detection chamber. The aim is [...] Read more.
A photoacoustic sensor system (PAS) intended for carbon dioxide (CO2) blood gas detection is presented. The development focuses on a photoacoustic (PA) sensor based on the so-called two-chamber principle, i.e., comprising a measuring cell and a detection chamber. The aim is the reliable continuous monitoring of transcutaneous CO2 values, which is very important, for example, in intensive care unit patient monitoring. An infrared light-emitting diode (LED) with an emission peak wavelength at 4.3 µm was used as a light source. A micro-electro-mechanical system (MEMS) microphone and the target gas CO2 are inside a hermetically sealed detection chamber for selective target gas detection. Based on conducted simulations and measurement results in a laboratory setup, a miniaturized PA CO2 sensor with an absorption path length of 2.0 mm and a diameter of 3.0 mm was developed for the investigation of cross-sensitivities, detection limit, and signal stability and was compared to a commercial infrared CO2 sensor with a similar measurement range. The achieved detection limit of the presented PA CO2 sensor during laboratory tests is 1 vol. % CO2. Compared to the commercial sensor, our PA sensor showed less influences of humidity and oxygen on the detected signal and a faster response and recovery time. Finally, the developed sensor system was fixed to the skin of a test person, and an arterialization time of 181 min could be determined. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Detection of SO2F2 Using a Photoacoustic Two-Chamber Approach
by Hassan Yassine, Christian Weber, Andre Eberhardt, Mahmoud El-Safoury, Jürgen Wöllenstein and Katrin Schmitt
Sensors 2024, 24(1), 191; https://doi.org/10.3390/s24010191 - 28 Dec 2023
Cited by 2 | Viewed by 1595
Abstract
The wide use of sulfuryl difluoride (SO2F2) for termite control in buildings, warehouses and shipping containers requires the implementation of suitable sensors for reliable detection. SO2F2 is highly toxic to humans and the environment, and moreover, [...] Read more.
The wide use of sulfuryl difluoride (SO2F2) for termite control in buildings, warehouses and shipping containers requires the implementation of suitable sensors for reliable detection. SO2F2 is highly toxic to humans and the environment, and moreover, it is a potent greenhouse gas. We developed two photoacoustic two-chamber sensors with the aim to detect two different concentration ranges, 0–1 vol.-% SO2F2 and 0–100 ppm SO2F2, so that different applications can be targeted: the sensor for high concentrations for the effective treatment of buildings, containers, etc., and the sensor for low concentrations as personal safety device. Photoacoustic detectors were designed, fabricated, and then filled with either pure SO2F2 or pure substituent gas, the refrigerant R227ea, to detect SO2F2. Absorption cells with optical path lengths of 50 mm and 1.6 m were built for both concentration ranges. The sensitivity to SO2F2 as well as cross-sensitivities to CO2 and H2O were measured. The results show that concentrations below 1 ppm SO2F2 can be reliably detected, and possible cross-sensitivities can be effectively compensated. Full article
(This article belongs to the Special Issue Advanced Sensors for Real-Time Monitoring Applications ‖)
Show Figures

Figure 1

13 pages, 5880 KiB  
Article
Towards a Miniaturized Photoacoustic Detector for the Infrared Spectroscopic Analysis of SO2F2 and Refrigerants
by Hassan Yassine, Christian Weber, Nicolas Brugger, Jürgen Wöllenstein and Katrin Schmitt
Sensors 2023, 23(1), 180; https://doi.org/10.3390/s23010180 - 24 Dec 2022
Cited by 5 | Viewed by 2775
Abstract
Sulfuryl fluoride (SO2F2) is a toxic and potent greenhouse gas that is currently widely used as a fumigant insecticide in houses, food, and shipping containers. Though it poses a major hazard to humans, its detection is still carried out [...] Read more.
Sulfuryl fluoride (SO2F2) is a toxic and potent greenhouse gas that is currently widely used as a fumigant insecticide in houses, food, and shipping containers. Though it poses a major hazard to humans, its detection is still carried out manually and only on a random basis. In this paper, we present a two-chamber photoacoustic approach for continuous SO2F2 sensing. Because of the high toxicity of SO2F2, the concept is to use a non-toxic substituent gas with similar absorption characteristics in the photoacoustic detector chamber, i.e., to measure SO2F2 indirectly. The refrigerants R227ea, R125, R134a, and propene were identified as possible substituents using a Fourier-transform infrared (FTIR) spectroscopic analysis. The resulting infrared spectra were used to simulate the sensitivity of the substituents of a photoacoustic sensor to SO2F2 in different concentration ranges and at different optical path lengths. The simulations showed that R227ea has the highest sensitivity to SO2F2 among the substituents and is therefore a promising substituent detector gas. Simulations concerning the possible cross-sensitivity of the photoacoustic detectors to H2O and CO2 were also performed. These results are the first step towards the development of a miniaturized, sensitive, and cost-effective photoacoustic sensor system for SO2F2. Full article
(This article belongs to the Collection Gas Sensors)
Show Figures

Figure 1

Back to TopTop