Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = tubby-like proteins (TLPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7721 KiB  
Article
Characterization and Expression Analysis of the PvTLP Gene Family in the Common Bean (Phaseolus vulgaris) in Response to Salt and Drought Stresses
by Xue Dong, Min Zhao, Jia Li, Fuyi Qiu, Yan Wang, Jiandong Zhao, Jianwu Chang and Xiaopeng Hao
Int. J. Mol. Sci. 2025, 26(12), 5702; https://doi.org/10.3390/ijms26125702 - 13 Jun 2025
Viewed by 309
Abstract
Tubby-like proteins (TLPs) are essential multifunctional transcription factors in plants that significantly influence plant growth and development, signal transduction, and adaptation to environmental stress. Despite their importance, there is limited knowledge of the identification and functional roles of the TLP gene family in [...] Read more.
Tubby-like proteins (TLPs) are essential multifunctional transcription factors in plants that significantly influence plant growth and development, signal transduction, and adaptation to environmental stress. Despite their importance, there is limited knowledge of the identification and functional roles of the TLP gene family in the common bean. In this study, we identified the PvTLP gene family, which consists of 10 PvTLP genes distributed unevenly across seven chromosomes. Phylogenetic analysis revealed that these genes could be classified into three subfamilies (A, B, and C). All PvTLP proteins contained both conserved tubby and F-box domains, with the exception of PvTLP7, which lacks the F-box domain. Conserved motif analysis revealed that 10 PvTLP genes contained motif 1 and motif 3. Cis-acting elements analysis indicated that PvTLP genes might be involved in light, hormone, and stress responses. Synteny analysis revealed a closer phylogenetic relationship between the common bean and dicotyledons than monocotyledons. qRT-PCR analysis confirmed the significant differences in the expression of most PvTLP genes in both leaves and roots under salt and drought stresses. These findings provide valuable insights for further exploration of the molecular functions of TLPs in plant responses to various stresses and offer key candidate genes for enhancing stress resistance in the common bean through molecular breeding. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

21 pages, 13979 KiB  
Article
Potato E3 Ubiquitin Ligase StXERICO1 Positively Regulates Drought Resistance by Enhancing ABA Accumulation in Potato and Tobacco and Interacts with the miRNA Novel-miR1730-3p and Proteins StUBC and StTLP
by Jing Yi, Lai Wang, Yongkun Chen, Canhui Li and Ming Gong
Agronomy 2024, 14(10), 2305; https://doi.org/10.3390/agronomy14102305 - 7 Oct 2024
Cited by 4 | Viewed by 1509
Abstract
Potato (Solanum tuberosum L.) is sensitive to drought, which severely impacts tuber yield and quality. In this study, we characterized a XERICO gene, encoding a RING-H2 type E3 ubiquitin ligase, StXERICO1, from a diploid potato, investigated its role in enhancing drought [...] Read more.
Potato (Solanum tuberosum L.) is sensitive to drought, which severely impacts tuber yield and quality. In this study, we characterized a XERICO gene, encoding a RING-H2 type E3 ubiquitin ligase, StXERICO1, from a diploid potato, investigated its role in enhancing drought resistance and ABA accumulation, and identified its interaction with the miRNA novel-miR1730-3p, as well as its protein interactions with StUBC and StTLP. StXERICO1, with a complete Open Reading Frame (ORF) of 459 bp encoding 152 amino acids, was highly responsive to drought, ABA treatment, and abiotic stresses in potato plants. Overexpression of the StXERICO1 significantly enhanced drought resistance and ABA accumulation in transgenic potato and tobacco plants and exhibited greater sensitivity to ABA treatment, which was associated with the upregulation of expression of ABA biosynthetic genes NCED and CYP707A. Furthermore, our results revealed that StXERICO1 and its encoding protein interacted with miRNAs and other proteins. 5′ RLM-RACE (cDNA terminal rapid amplification) experiment showed that the miRNA novel-miR1730-3p targets 5′ UTR region of the StXERICO1 gene. Dual luciferase assay and virus-based miRNA silencing experiment showed that the novel-miR1730-3p negatively regulates StXERICO1 expression. Moreover, yeast two-hybrid assay indicated that StXERICO1 interacts with StUBC (an E2 ubiquitin ligase) and StTLP (a Tubby-like protein), suggesting that StXERICO1 might function on ABA homeostasis at the post-translational level. These findings elucidate the molecular mechanisms by which StXERICO1, a RING-H2 type E3 ubiquitin ligase, enhances drought resistance through increased ABA accumulation, how its expression is regulated by miRNA, and how it exerts its function through interactions with other proteins. The results also provide a potential candidate gene for subsequent precision molecular breeding aimed at improving crop drought resistance. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 1539 KiB  
Article
Comprehensive Genome-Wide Natural Variation and Expression Analysis of Tubby-like Proteins Gene Family in Brachypodium distachyon
by Sendi Mejia, Jose Lorenzo B. Santos and Christos Noutsos
Plants 2024, 13(7), 987; https://doi.org/10.3390/plants13070987 - 29 Mar 2024
Cited by 1 | Viewed by 1685
Abstract
The Tubby-like proteins (TLPs) gene family is a group of transcription factors found in both animals and plants. In this study, we identified twelve B. distachyon TLPs, divided into six groups based on conserved domains and evolutionary relationships. We predicted cis-regulatory elements involved [...] Read more.
The Tubby-like proteins (TLPs) gene family is a group of transcription factors found in both animals and plants. In this study, we identified twelve B. distachyon TLPs, divided into six groups based on conserved domains and evolutionary relationships. We predicted cis-regulatory elements involved in light, hormone, and biotic and abiotic stresses. The expression patterns in response to light and hormones revealed that BdTLP3, 4, 7, and 14 are involved in light responses, and BdTLP1 is involved in ABA responses. Furthermore, BdTLP2, 7, 9, and 13 are expressed throughout vegetative and reproductive stages, whereas BdTLP1, 3, 5, and 14 are expressed at germinating grains and early vegetative development, and BdTLP4, 6, 8, and 10 are expressed at the early reproduction stage. The natural variation in the eleven most diverged B. distachyon lines revealed high conservation levels of BdTLP1-6 to high variation in BdTLP7-14 proteins. Based on diversifying selection, we identified amino acids in BdTLP1, 3, 8, and 13, potentially substantially affecting protein functions. This analysis provided valuable information for further functional studies to understand the regulation, pathways involved, and mechanism of BdTLPs. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 8254 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of Tubby-like Protein (TLP) Gene Family Members in Woodland Strawberry (Fragaria vesca)
by Shuangtao Li, Guixia Wang, Linlin Chang, Rui Sun, Ruishuang Wu, Chuanfei Zhong, Yongshun Gao, Hongli Zhang, Lingzhi Wei, Yongqing Wei, Yuntao Zhang, Jing Dong and Jian Sun
Int. J. Mol. Sci. 2022, 23(19), 11961; https://doi.org/10.3390/ijms231911961 - 8 Oct 2022
Cited by 7 | Viewed by 2563
Abstract
Tubby-like proteins (TLPs) play important roles in plant growth and development and in responses to abiotic stress. However, TLPs in strawberry remain poorly studied. In this study, eight TLPs were identified in woodland strawberry (Fragaria vesca subspecies vesca ‘Ruegen’). Protein structure [...] Read more.
Tubby-like proteins (TLPs) play important roles in plant growth and development and in responses to abiotic stress. However, TLPs in strawberry remain poorly studied. In this study, eight TLPs were identified in woodland strawberry (Fragaria vesca subspecies vesca ‘Ruegen’). Protein structure analysis revealed that the structure of FvTLPs is highly conserved, but evolutionary and gene structure analyses revealed that the evolutionary pattern of FvTLP family members differs from that of their orthologous genes in Arabidopsis, poplar, and apple. Subcellular localization assays revealed that FvTLPs were localized to the nucleus and plasma membrane. FvTLPs showed no transcriptional activity. Yeast two-hybrid assays revealed that FvTLPs interact with specific FvSKP1s. The expression patterns of FvTLPs in different tissues and under various abiotic stresses (salt, drought, cold, and heat) and hormone treatments (ABA (abscisic acid) and MeJA (methyl jasmonate)) were determined. The expression patterns of FvTLPs indicated that they play a role in regulating growth and development and responses to abiotic stress in F. vesca. The GUS (beta-glucuronidase) activity of FvTLP1pro::GUS plants in GUS activity assays increased under salt and drought stress and abscisic acid treatment. The results of this study provide new insights into the molecular mechanisms underlying the functions of TLPs. Full article
(This article belongs to the Special Issue Abiotic Stress in Plant: From Gene to the Fields)
Show Figures

Figure 1

14 pages, 3047 KiB  
Article
Comprehensive Profiling of Tubby-Like Protein Expression Uncovers Ripening-Related TLP Genes in Tomato (Solanum lycopersicum)
by Yaoxin Zhang, Xiaoqing He, Dan Su, Yuan Feng, Haochen Zhao, Heng Deng and Mingchun Liu
Int. J. Mol. Sci. 2020, 21(3), 1000; https://doi.org/10.3390/ijms21031000 - 3 Feb 2020
Cited by 17 | Viewed by 3914
Abstract
Tubby-like proteins (TLPs), which were firstly identified in obese mice, play important roles in male gametophyte development, biotic stress response, and abiotic stress responses in plants. To date, the role of TLP genes in fruit ripening is largely unknown. Here, through a bioinformatics [...] Read more.
Tubby-like proteins (TLPs), which were firstly identified in obese mice, play important roles in male gametophyte development, biotic stress response, and abiotic stress responses in plants. To date, the role of TLP genes in fruit ripening is largely unknown. Here, through a bioinformatics analysis, we identified 11 TLPs which can be divided into three subgroups in tomato (Solanum lycopersicum), a model plant for studying fruit development and ripening. It was shown that all SlTLPs except SlTLP11 contain both the Tub domain and F-box domain. An expression profiling analysis in different tomato tissues and developmental stages showed that 7 TLP genes are mainly expressed in vegetative tissues, flower, and early fruit developmental stages. Interestingly, other 4 TLP members (SlTLP1, SlTLP2, SlTLP4, and SlTLP5) were found to be highly expressed after breaker stage, suggesting a potential role of these genes in fruit ripening. Moreover, the induced expression of SlTLP1 and SlTLP2 by exogenous ethylene treatment and the down expression of the two genes in ripening mutants, further support their putative role in the ripening process. Overall, our study provides a basis for further investigation of the function of TLPs in plant development and fruit ripening. Full article
(This article belongs to the Special Issue Plant Cell and Organism Development)
Show Figures

Figure 1

Back to TopTop