Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = tropical coral reefs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5696 KiB  
Article
Growth Patterns of Reef-Building Porites Species in the Remote Clipperton Atoll Reef
by Ania Ochoa-Serena, J. J. Adolfo Tortolero-Langarica, Fabián A. Rodríguez-Zaragoza, Juan P. Carricart-Ganivet, Eric Clua and Alma P. Rodríguez-Troncoso
Diversity 2025, 17(7), 492; https://doi.org/10.3390/d17070492 - 18 Jul 2025
Viewed by 1210
Abstract
Remote reefs offer insights into natural coral dynamics, influenced by regional environmental factors and climate change fluctuations. Clipperton Atoll is the eastern tropical Pacific’s most isolated reef, where coral reef growth and life strategies have been poorly studied so far. Recognizing the coral [...] Read more.
Remote reefs offer insights into natural coral dynamics, influenced by regional environmental factors and climate change fluctuations. Clipperton Atoll is the eastern tropical Pacific’s most isolated reef, where coral reef growth and life strategies have been poorly studied so far. Recognizing the coral species’ growth response might help understand ecological dynamics and the impacts of anthropogenic stressors on coastal reefs. The present study evaluates annual coral growth parameters of the most abundant coral reef-building species, Porites australiensis, Porites arnaudi, Porites lutea, and Porites lobata. The results showed that during 2015–2019, corals exhibited the lowest annual linear extension (0.65 ± 0.29 cm yr−1), skeletal density (1.14 ± 0.32 g cm−3), and calcification rates (0.78 ± 0.44 g cm−2 yr−1) for the genera along the Pacific. Differences in growth patterns among species were observed, with Porites lutea and Porites lobata showing a higher radial extension, developing massive-hemispherical morphologies, and acting as structural stabilizers; meanwhile, P. arnaudi and P. australiensis exhibited more skeletal compaction but also with a high plasticity on their morphologies, contributing to benthic heterogeneity. These differences are particularly important as each species fulfills different ecological functions within the reef, contributing to the ecosystem balance and enhancing the relevance of the massive species in the physical structure of remote reef systems, such as Clipperton Atoll. Full article
(This article belongs to the Special Issue Eco-Physiology of Shallow Benthic Communities)
Show Figures

Graphical abstract

45 pages, 5448 KiB  
Article
Runaway Climate Across the Wider Caribbean and Eastern Tropical Pacific in the Anthropocene: Threats to Coral Reef Conservation, Restoration, and Social–Ecological Resilience
by Edwin A. Hernández-Delgado and Yanina M. Rodríguez-González
Atmosphere 2025, 16(5), 575; https://doi.org/10.3390/atmos16050575 - 11 May 2025
Cited by 1 | Viewed by 2462
Abstract
Marine heatwaves (MHWs) are increasingly affecting tropical seas, causing mass coral bleaching and mortality in the wider Caribbean (WC) and eastern tropical Pacific (ETP). This leads to significant coral loss, reduced biodiversity, and impaired ecological functions. Climate models forecast a troubling future for [...] Read more.
Marine heatwaves (MHWs) are increasingly affecting tropical seas, causing mass coral bleaching and mortality in the wider Caribbean (WC) and eastern tropical Pacific (ETP). This leads to significant coral loss, reduced biodiversity, and impaired ecological functions. Climate models forecast a troubling future for Latin American coral reefs, but downscaled projections for the WC and ETP remain limited. Understanding regional temperature thresholds that threaten coral reef futures and restoration efforts is critical. Our goals included analyzing historical trends in July–August–September–October (JASO) temperature anomalies and exploring future projections at subregional and country levels. From 1940 to 2023, JASO air and ocean temperature anomalies showed significant increases. Projections indicate that even under optimistic scenario 4.5, temperatures may exceed the +1.5 °C air threshold beyond pre-industrial levels by the 2040s and the +1.0 °C ocean threshold beyond historical annual maximums by the 2030s, resulting in severe coral bleaching and mortality. Business-as-usual scenario 8.5 suggests conditions will become intolerable for coral conservation and restoration by the 2030s, with decadal warming trends largely surpassing historical rates, under unbearable conditions for corals. The immediate development of regional and local adaptive coral reef conservation and restoration plans, along with climate change adaptation and mitigation strategies, is essential to provide time for optimistic scenarios to materialize. Full article
Show Figures

Figure 1

18 pages, 2489 KiB  
Article
Stormwater Treatment in Future Tropical and Sub-Tropical Climates
by Lawrence Mills, Benjamin Taylor, Raj Sharma and Shameen Jinadasa
Water 2025, 17(5), 715; https://doi.org/10.3390/w17050715 - 28 Feb 2025
Viewed by 661
Abstract
Stormwater treatment systems play an integral part in achieving sustainable urban development. The performance of these systems is likely to be impacted by potential changes in climatic patterns, including precipitation. This project investigates the simulated impacts of climate change on the performance of [...] Read more.
Stormwater treatment systems play an integral part in achieving sustainable urban development. The performance of these systems is likely to be impacted by potential changes in climatic patterns, including precipitation. This project investigates the simulated impacts of climate change on the performance of stormwater treatment systems used as a part of Water-Sensitive Urban Design (WSUD). Townsville and the Gold Coast of Queensland, Australia, were selected for the study to investigate tropical and sub-tropical climates experienced by cities across the globe adjoining sensitive coastal environments such as wetlands and coral reefs. The daily precipitation output projected by Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models was downscaled to pluviograph input into the Model for Urban Improvement Conceptualisation (MUSIC). The treatment performance of bioretention systems and constructed wetlands was variable across both locations, with some models showing little to no change or improvement. Worsening of treatment performance was more prominent in the tropical climate, with numerous models reaching a decline of up to 16%. However, the highest observed reduction from a single model output occurred in the sub-tropical climate location. To make the WSUD treatment system effective under the future climate scenarios, physical modification is necessary to increase the treatment area or depth. Increasing the area in the worst-case scenario could incur a cost increase of 20% to 30% and present challenges due to development constraints. Increasing the depth could be a viable alternative for bioretention systems but is likely impractical for constructed wetlands. Full article
Show Figures

Figure 1

15 pages, 3697 KiB  
Review
Living Coral Displays, Research Laboratories, and Biobanks as Important Reservoirs of Chemodiversity with Potential for Biodiscovery
by Ricardo Calado, Miguel C. Leal, Ruben X. G. Silva, Mara Borba, António Ferro, Mariana Almeida, Diana Madeira and Helena Vieira
Mar. Drugs 2025, 23(2), 89; https://doi.org/10.3390/md23020089 - 19 Feb 2025
Viewed by 1174
Abstract
Over the last decades, bioprospecting of tropical corals has revealed numerous bioactive compounds with potential for biotechnological applications. However, this search involves sampling in natural reefs, and this is currently hampered by multiple ethical and technological constraints. Living coral displays, research laboratories, and [...] Read more.
Over the last decades, bioprospecting of tropical corals has revealed numerous bioactive compounds with potential for biotechnological applications. However, this search involves sampling in natural reefs, and this is currently hampered by multiple ethical and technological constraints. Living coral displays, research laboratories, and biobanks currently offer an opportunity to continue to unravel coral chemodiversity, acting as “Noah’s Arks” that may continue to support the bioprospecting of molecules of interest. This issue is even more relevant if one considers that tropical coral reefs currently face unprecedent threats and irreversible losses that may impair the biodiscovery of molecules with potential for new products, processes, and services. Living coral displays provide controlled environments for studying corals and producing both known and new metabolites under varied conditions, and they are not prone to common bottlenecks associated with bioprospecting in natural coral reefs, such as loss of the source and replicability. Research laboratories may focus on a particular coral species or bioactive compound using corals that were cultured ex situ, although they may differ from wild conspecifics in metabolite production both in quantitative and qualitative terms. Biobanks collect and preserve coral specimens, tissues, cells, and/or information (e.g., genes, associated microorganisms), which offers a plethora of data to support the study of bioactive compounds’ mode of action without having to cope with issues related to access, standardization, and regulatory compliance. Bioprospecting in these settings faces several challenges and opportunities. On one hand, it is difficult to ensure the complexity of highly biodiverse ecosystems that shape the production and chemodiversity of corals. On the other hand, it is possible to maximize biomass production and fine tune the synthesis of metabolites of interest under highly controlled environments. Collaborative efforts are needed to overcome barriers and foster opportunities to fully harness the chemodiversity of tropical corals before in-depth knowledge of this pool of metabolites is irreversibly lost due to tropical coral reefs’ degradation. Full article
(This article belongs to the Special Issue Biologically Active Compounds from Marine Invertebrates 2025)
Show Figures

Figure 1

33 pages, 5213 KiB  
Article
The Revolution of Small Snails and the Early Modern Evolutionary Fauna
by Stefano Dominici
Diversity 2025, 17(2), 120; https://doi.org/10.3390/d17020120 - 8 Feb 2025
Viewed by 909
Abstract
The species richness of major clades and functional groups among gastropods, a key element of Modern Evolutionary Fauna (MEF), underlines the dominant role of carnivorous Caenogastropoda and Heterobranchia, including small ectoparasites and micrograzers, at modern tropical latitudes. Neogastropoda are active predators that radiated [...] Read more.
The species richness of major clades and functional groups among gastropods, a key element of Modern Evolutionary Fauna (MEF), underlines the dominant role of carnivorous Caenogastropoda and Heterobranchia, including small ectoparasites and micrograzers, at modern tropical latitudes. Neogastropoda are active predators that radiated in the Cretaceous, but their early Mesozoic MEF roots are poorly understood. The escalation hypothesis emphasises prey–predator interactions as gastropods’ macroevolutionary drivers during the Mesozoic Marine Revolution but overlooks the significance of highly diversified smaller forms. The tropical fossil record of the Permian–Triassic mass extinction (PTME) and the Triassic rise of MEF suggests that non-carnivorous species dominated gastropod fauna immediately before and after the PTME: Permian micrograzers mainly fed on sponges and waned during the rise of MEF, while ectoparasites and micrograzing carnivores diversified starting from the Ladinian period. Patterns of gastropod species richness, size, and form, the fossil record of reef builders and other benthic invertebrates, and an analysis of stem neogastropods jointly suggest a Middle Triassic revolution of small-sized gastropods, triggered by the emergence of scleractinian corals and the diversification of echinoderms. Habitat heterogeneity and new food sources offered niches for the early radiation of modern gastropod clades. Full article
(This article belongs to the Special Issue Marine Biodiversity from the Triassic)
Show Figures

Figure 1

17 pages, 3043 KiB  
Communication
Invasion of the Atlantic Ocean and Caribbean Sea by a Large Benthic Foraminifer in the Little Ice Age
by Edward Robinson and Thera Edwards
Diversity 2025, 17(2), 110; https://doi.org/10.3390/d17020110 - 2 Feb 2025
Viewed by 1230
Abstract
The larger benthic foraminifera is a group of marine protists harbouring symbiotic algae, that are geographically confined to shallow tropical and subtropical waters, often associated with coral reefs. The resulting controls on availability of habitat and rates of dispersion make these foraminifers, particularly [...] Read more.
The larger benthic foraminifera is a group of marine protists harbouring symbiotic algae, that are geographically confined to shallow tropical and subtropical waters, often associated with coral reefs. The resulting controls on availability of habitat and rates of dispersion make these foraminifers, particularly the genus Amphistegina, useful proxies in the study of invasive marine biota, transported through hull fouling and ballast water contamination in modern commercial shipping. However, there is limited information on the importance of these dispersal mechanisms for foraminifers in the Pre-Industrial Era (pre-1850) for the Atlantic and Caribbean region. This paper examines possible constraints and vectors controlling the invasion of warm-water taxa from the Indo-Pacific region to the Atlantic and Caribbean region. Heterostegina depressa, first described from St. Helena, a remote island in the South Atlantic, provides a test case. The paper postulates that invasions through natural range expansion or ocean currents were unlikely along the possible available routes and hypothesises that anthropogenic vectors, particularly sailing ships, were the most likely means of transport. It concludes that the invasion of the Atlantic by H. depressa was accomplished within the Little Ice Age (1350–1850 C.E.), during the period between the start of Portuguese marine trade with east Africa in 1497 and the first description of H. depressa in 1826. This hypothesis is likely applicable to other foraminifers and other biota currently resident in the Atlantic and Caribbean region. The model presented provides well-defined parameters that can be tested using methods such as isotopic dating of foraminiferal assemblages in cores and genetic indices of similarity of geographic populations. Full article
(This article belongs to the Special Issue Ecology and Paleoecology of Atlantic and Caribbean Coral Reefs)
Show Figures

Figure 1

22 pages, 2996 KiB  
Article
Cellular Responses of Astrangia poculata (Ellis and Solander, 1786) and Its Symbiont to Experimental Heat Stress
by Tyler E. Harman, Daniel Barshis, Briana Hauff Salas and Kevin B. Strychar
Water 2025, 17(3), 411; https://doi.org/10.3390/w17030411 - 1 Feb 2025
Viewed by 1205
Abstract
Climate change has had devastating effects on tropical coral reefs; however, much less is known regarding how heat stress affects temperate coral. This research focuses on Astrangia poculata (Ellis and Solander, 1786) collected from Narragansett Bay, RI, during the summer and winter seasons [...] Read more.
Climate change has had devastating effects on tropical coral reefs; however, much less is known regarding how heat stress affects temperate coral. This research focuses on Astrangia poculata (Ellis and Solander, 1786) collected from Narragansett Bay, RI, during the summer and winter seasons and understanding the effect of experimental thermal extremes (i.e., 26 °C) on seasonally different populations. Photosynthetic efficiency (Fv/Fm), symbiont density (via an inverse relationship with pixel intensity), and oxidative stress via reactive oxygen species (ROS) concentrations were measured on symbiotic and aposymbiotic A. poculata. Higher Fv/Fm rates were observed in summer- vs. winter-collected corals (p ≤ 0.05). Lower symbiont density within symbiotic and aposymbiotic A. poculata were observed at elevated temperatures, and higher intensities as well as symbiotic coral were observed in winter compared to the summer collections (p ≤ 0.05). No differences in ROS were observed in host tissue cells, suggesting that ROS produced in the algal symbionts was not translocated into host tissues. Overall, higher ROS concentrations were observed in summer- vs. winter-collected corals (p ≤ 0.05) in both symbiotic states. ROS concentrations were higher in symbiotic compared to aposymbitoic colonies (p ≤ 0.05), albeit no differences were observed between temperature treatments, suggesting that antioxidants mitigate the deleterious effects of ROS on host tissues. Full article
Show Figures

Figure 1

29 pages, 8364 KiB  
Article
Photobiota of the Tropical Red Sea: Fatty Acid Profile Analysis and Nutritional Quality Assessments
by Sarah A. Gozai-Alghamdi, Samir M. Aljbour, Saeed A. Amin and Susana Agustí
Molecules 2025, 30(3), 621; https://doi.org/10.3390/molecules30030621 - 31 Jan 2025
Viewed by 976
Abstract
Photosynthetic organisms are primary sources of marine-derived molecules, particularly ω3 fatty acids (FAs), which influence the quality of marine foods. It is reported that tropical organisms possess lower FA nutritional quality than those from colder oceans. However, the high biodiversity known for tropical [...] Read more.
Photosynthetic organisms are primary sources of marine-derived molecules, particularly ω3 fatty acids (FAs), which influence the quality of marine foods. It is reported that tropical organisms possess lower FA nutritional quality than those from colder oceans. However, the high biodiversity known for tropical areas may help compensate for this deficiency by producing a high diversity of molecules with nutritional benefits for the ecosystem. Here we addressed this aspect by analyzing the FA profiles of 20 photosynthetic organisms from the salty and warm Red Sea, a biodiversity hot spot, including cyanobacteria, eukaryotic microalgae, macroalgae, mangrove leaves, as well as three selected reef’s photosymbiotic zooxanthellate corals and jellyfish. Using direct transesterification, gas chromatography-mass spectrometry, FA absolute quantification, and nutritional indexes, we evaluated their lipid nutritional qualities. We observed interspecific and strain-specific variabilities in qualities, which the unique environmental conditions of the Red Sea may help to explain. Generally, eukaryotic microalgae exhibited the highest nutritional quality. The previously unanalyzed diatoms Leyanella sp. and Minutocellus sp. had the highest eicosapentaenoic acid (EPA) contents. The bioprospected Red Sea photobiota exhibited pharmaceutical and nutraceutical potential. By sourcing and quantifying these bioactive compounds, we highlight the untapped rich biodiversity of the Red Sea and showcase opportunities to harness these potentials. Full article
Show Figures

Graphical abstract

17 pages, 3620 KiB  
Article
Extending Satellite Predictions of Coral Disease Outbreak Risk to Non-Seasonal Coral Reef Regions
by Momoe Yoshida and Scott F. Heron
Remote Sens. 2025, 17(2), 262; https://doi.org/10.3390/rs17020262 - 13 Jan 2025
Viewed by 727
Abstract
Coral disease outbreaks have increased in frequency and extent worldwide since the 1970s, coinciding with the rapid increase in ocean warming. Summer and winter temperature-based metrics have proven effective in predicting coral disease outbreaks in seasonal coral reef regions. However, their utility is [...] Read more.
Coral disease outbreaks have increased in frequency and extent worldwide since the 1970s, coinciding with the rapid increase in ocean warming. Summer and winter temperature-based metrics have proven effective in predicting coral disease outbreaks in seasonal coral reef regions. However, their utility is unknown in non-seasonal coral reef areas. Here, a new methodology, independent of seasonal patterns, is developed for application in both seasonal and non-seasonal coral reef regions. Percentile-based metric thresholds were defined from seasonal equivalents in the Great Barrier Reef (GBR) and tested in seasonal and non-seasonal coral reef regions of the tropical Pacific Ocean. Between new and existing methodologies, median differences of 0.00 °C (thresholds) and 0.00 °C-weeks (metrics) for Hot Snap and Cold Snap; and 0.01 °C (threshold) and −0.17 °C-weeks (metric) for Winter Condition were observed among reef pixels of the GBR. The new methodology shows strong consistency with the existing tools used for seasonal regions (e.g., R2 = 0.811–0.903; GBR case studies). Comparisons of the new metrics with disease observations were constrained by the limited availability of disease data; however, the comparisons undertaken suggest predictive capability in non-seasonal regions. To establish robust correlations, further direct comparisons of the new metrics with disease data across various non-seasonal regions and timeframes are essential. With ocean warming projected to persist in the coming decades, improving the predictive tools used to assess ecological impacts is necessary to support effective coral reef management. Full article
(This article belongs to the Section Coral Reefs Remote Sensing)
Show Figures

Graphical abstract

15 pages, 3201 KiB  
Article
Fish Larval Assemblage Associated with an Eastern Tropical Pacific Coral Reef: Seasonal and Interannual Variability
by Juan José Gallego-Zerrato, Diego Fernando Córdoba-Rojas and Alan Giraldo
Diversity 2025, 17(1), 23; https://doi.org/10.3390/d17010023 - 29 Dec 2024
Viewed by 839
Abstract
The seasonal and interannual temporal variation in the composition, richness, diversity, and similarity of fish larval assemblages associated with an Eastern Tropical Pacific (ETP) coral reef system was studied in March (cold water) and September (warm water) during the years 2017, 2018, and [...] Read more.
The seasonal and interannual temporal variation in the composition, richness, diversity, and similarity of fish larval assemblages associated with an Eastern Tropical Pacific (ETP) coral reef system was studied in March (cold water) and September (warm water) during the years 2017, 2018, and 2019. Throughout the study period, we collected 4779 fish larvae and identified 88 taxa, encompassing 46 families. This increased the total number of recorded fish taxa for the region to 146. Fish larvae were collected by daytime and nighttime surface trawls, using a bongo net 30 cm in diameter and 180 cm in length, equipped with mesh sizes of 300 and 500 μm. The species diversity and abundance of ichthyoplankton over this ETP coral reef changed by intra-annual variation of the hydrological conditions of the upper layer of the sea. Six significant assemblages were identified (SIMPROF, p < 0.05), each one associated with each sampling period (ANOSIM, R = 0.764); Cetengraulis mysticetus, Diaphus pacificus, Anchoa sp., Anisotremus sp., Bremaceros bathymaster, Oligoplites saurus, Caranx sp., Seriola sp., Gobiidae sp., Microgobius sp., and Synodus evermanni were the species that contributed to dissimilitude between groups. Canonical correspondence analysis revealed significant associations between specific larval fish taxa abundance and temperature, salinity, dissolved oxygen, and zooplankton biomass. Overall, the assemblage of ichthyoplankton in this ETP coral reef system is sensitive to seasonal changes in water column hydrographic conditions. Full article
Show Figures

Figure 1

19 pages, 3886 KiB  
Article
Validating CYGNSS Wind Speeds with Surface-Based Observations and Triple Collocation Analysis
by Ashley Wild, Yuriy Kuleshov, Suelynn Choy and Lucas Holden
Remote Sens. 2024, 16(24), 4702; https://doi.org/10.3390/rs16244702 - 17 Dec 2024
Viewed by 965
Abstract
Existing validation of mean wind speed estimates via reflectometry from global navigation systems of satellites (GNSS-R)—has been largely limited in spatial coverage to equatorial buoys or tropical cyclone events near continental United States. Two alternative validation techniques are presented for the Cyclone GNSS [...] Read more.
Existing validation of mean wind speed estimates via reflectometry from global navigation systems of satellites (GNSS-R)—has been largely limited in spatial coverage to equatorial buoys or tropical cyclone events near continental United States. Two alternative validation techniques are presented for the Cyclone GNSS (CYGNSS) mission using surface-based observations along coasts and coral reefs instead of buoys, and triple collocation analysis (TCA) instead of a 1:1 gridded comparison for tropical cyclone (TC) events. For the surface-based analysis, Fully Developed Seas (FDS) v3.2 and NOAA v1.2 were compared to anemometer data provided by the Australian Bureau of Meteorology across the Australia and Pacific regions. Overall, the products performed similarly to previous studies with NOAA having higher correlations and lower errors than FDS, though FDS performed better than NOAA over the Australian dataset for high wind speed events. TCA was used to validate NOAA v1.2 and Merged v3.2 datasets with other satellite remotely sensed products from the Soil Moisture Active Passive (SMAP) mission and Synthetic Aperture Radar (SAR). Both additive and multiplicative error models for TCA were applied. The performance overall was similar between the two products, with NOAA producing higher errors. NOAA performed better than Merged for mean winds above 17 m/s as the large temporal averaging reduced sensitivity to high winds. For SMAP winds above 17 m/s, NOAA’s average bias (−2.1 m/s) was significantly smaller than the average bias in Merged (−4.4 m/s). Future ideas for rapid intensification detection and constellation design are discussed. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

12 pages, 8106 KiB  
Article
Spatial and Temporal Diversity of Fishes at Wuzhizhou Island in the South China Sea Based on Environmental DNA
by Ting Jiang, Kun Cao, Xin Wang, Rui Xi, Chongzhao Wang, Rui Yang, Wei Yang, Zhenhua Ma and Yingchun Xing
Diversity 2024, 16(12), 712; https://doi.org/10.3390/d16120712 - 21 Nov 2024
Viewed by 994
Abstract
Wuzhizhou Island (WZZ) is one of the most mature tourism islands on the coast of the South China Sea, and its surrounding waters are rich in tropical coral reef fishes. Tourism could affect marine biodiversity, especially the coral reef fish community. In order [...] Read more.
Wuzhizhou Island (WZZ) is one of the most mature tourism islands on the coast of the South China Sea, and its surrounding waters are rich in tropical coral reef fishes. Tourism could affect marine biodiversity, especially the coral reef fish community. In order to understand the species diversity of fish surrounding WZZ, environmental DNA (eDNA) samples were collected from six sampling sites around the island, located in the core and non-core tourism areas, respectively, from 2022 to 2023. In total, 188 fish species, belonging to 124 genera, 63 families and 17 orders, were detected using eDNA method. The Perciformes contained the highest number of species (n = 130, 69.15% of total number). Compared to traditional fishing nets, eDNA could provide more information on fish species. The results indicated that species richness and Margalef’s index were higher at the sampling sites in the core area of tourism of WZZ, which maybe relevant to tourism-based provisioning. By contrast, the Shannon–Wiener index, Pielou’s index and dominant species of fish did not display significant differences between core and non-core tourism areas. On the basis of the results of the β-diversity index, the differences in fish communities had a closer relationship to geographical location. Furthermore, there were obvious differences in fish communities in different seasons, which may be attributed to the influence of ocean currents. Full article
Show Figures

Figure 1

19 pages, 2459 KiB  
Article
Taxonomic Diversity and Interannual Variation of Fish in the Lagoon of Meiji Reef (Mischief Reef), South China Sea
by Yuyan Gong, Jun Zhang, Zuozhi Chen, Yancong Cai and Yutao Yang
Biology 2024, 13(9), 740; https://doi.org/10.3390/biology13090740 - 21 Sep 2024
Cited by 1 | Viewed by 1202
Abstract
Coral reef fish are important groups of coral reefs, which have great economic and ecological value. Meiji Reef is a representative tropical semi-enclosed atoll in the South China Sea, with rich fish resources. Based on the data from hand-fishing, line-fishing, and gillnet surveys [...] Read more.
Coral reef fish are important groups of coral reefs, which have great economic and ecological value. Meiji Reef is a representative tropical semi-enclosed atoll in the South China Sea, with rich fish resources. Based on the data from hand-fishing, line-fishing, and gillnet surveys of fish in Meiji Reef from 1998 to 2018, this study summarized the fish species list of Meiji Reef and analyzed the species composition, inclusion index at the taxonomic level (TINCL), genus–family diversity index (G–F index), average taxonomic distinctness index (Δ+), and variation in taxonomic distinctness (Λ+) and their changes. The results revealed that from 1998 to 2018, there were 166 reef-dwelling fish species on Meiji Reef, belonging to 69 genera, 33 families, and 11 orders, of which 128 species were from 20 families of Perciformes, accounting for 77.10% of the total cataloged species. Regarding the dependence of fish on coral reefs, there were 155 reef-dependent species or resident species (accounting for 93.37%) and 11 reef-independent species or wandering species (accounting for 6.63%). The TINCL of the order, families, and genus of fish in Meiji Reef were very high. The genus diversity index (G index), family diversity index (F index), and G–F index of fish in Meiji Reef were very high, and the G index of fish in Meiji Reef in 1998–1999 was higher than that in 2016–2018. The Δ+ and Λ+ values of fish in Meiji Reef from 1998 to 2018 were 56.1 and 148.5, respectively. Compared with 1998–1999, Δ+ and Λ+ of fish increased during 2016–2018, reflecting that the relatives of fish in Meiji Reef became further distant, and the uniformity of taxonomic relationships among species decreased. The research findings indicated that fish exhibited a high taxonomic diversity in Meiji Reef; however, it also revealed significant fluctuations in the fish diversity of Meiji Reef over an extended period, emphasizing the urgent need for timely protection measures. This investigation significantly contributes to our comprehension of the intricate dynamics governing fish species within Meiji Reef and holds broader implications for biodiversity conservation in tropical marine ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

17 pages, 6479 KiB  
Article
Seasonal Proteome Variations in Orbicella faveolata Reveal Molecular Thermal Stress Adaptations
by Martha Ricaurte, Nikolaos V. Schizas, Ernesto F. Weil, Pawel Ciborowski and Nawal M. Boukli
Proteomes 2024, 12(3), 20; https://doi.org/10.3390/proteomes12030020 - 10 Jul 2024
Cited by 3 | Viewed by 2105
Abstract
Although seasonal water temperatures typically fluctuate by less than 4 °C across most tropical reefs, sustained heat stress with an increase of even 1 °C can alter and destabilize metabolic and physiological coral functions, leading to losses of coral reefs worldwide. The Caribbean [...] Read more.
Although seasonal water temperatures typically fluctuate by less than 4 °C across most tropical reefs, sustained heat stress with an increase of even 1 °C can alter and destabilize metabolic and physiological coral functions, leading to losses of coral reefs worldwide. The Caribbean region provides a natural experimental design to study how corals respond physiologically throughout the year. While characterized by warm temperatures and precipitation, there is a significant seasonal component with relative cooler and drier conditions during the months of January to February and warmer and wetter conditions during September and October. We conducted a comparative abundance of differentially expressed proteins with two contrasting temperatures during the cold and warm seasons of 2014 and 2015 in Orbicella faveolata, one of the most important and affected reef-building corals of the Caribbean. All presented proteoforms (42) were found to be significant in our proteomics differential expression analysis and classified based on their gene ontology. The results were accomplished by a combination of two-dimensional gel electrophoresis (2DE) to separate and visualize proteins and mass spectrometry (MS) for protein identification. To validate the differentially expressed proteins of Orbicella faveolata at the transcription level, qRT-PCR was performed. Our data indicated that a 3.1 °C increase in temperature in O. faveolata between the cold and warm seasons in San Cristobal and Enrique reefs of southwestern Puerto Rico was enough to affect the expression of a significant number of proteins associated with oxidative and heat stress responses, metabolism, immunity, and apoptosis. This research extends our knowledge into the mechanistic response of O. faveolata to mitigate thermal seasonal temperature variations in coral reefs. Full article
(This article belongs to the Section Proteoform Analysis (Top-Down and Bottom-Up))
Show Figures

Graphical abstract

20 pages, 8807 KiB  
Article
Coral Shoals Detection from Optical Satellite Imagery Using Deep Belief Network Algorithm: A Case Study for the Xisha Islands, South China Sea
by Xiaomin Li, Yi Ma and Jie Zhang
J. Mar. Sci. Eng. 2024, 12(6), 922; https://doi.org/10.3390/jmse12060922 - 31 May 2024
Cited by 1 | Viewed by 1223
Abstract
Coral islands and reefs are formed by the cementation of the remains of shallow water reef-building coral polyps and other reef dwelling organisms in tropical oceans. They can be divided into coral islands, coral sandbanks, coral reefs, and coral shoals, of which, Coral [...] Read more.
Coral islands and reefs are formed by the cementation of the remains of shallow water reef-building coral polyps and other reef dwelling organisms in tropical oceans. They can be divided into coral islands, coral sandbanks, coral reefs, and coral shoals, of which, Coral shoals are located below the depth datum and are not exposed even at low tide, and sometimes are distributed at water depths exceeding 30 m. Satellite images with wide spatial–temporal coverage have played a crucial role in coral island and reef monitoring, and remote sensing data with multiple platforms, sensors, and spatial and spectral resolutions are employed. However, the accurate detection of coral shoals remains challenging mainly due to the depth effect, that is, coral shoals, especially deeper ones, have very similar spectral characteristics to the sea in optical images. Here, an optical remote sensing detection method is proposed to rapidly and accurately detect the coral shoals using a deep belief network (DBN) from optical satellite imagery. The median filter is used to filter the DBN classification results, and the appropriate filtering window is selected according to the spatial resolution of the optical images. The proposed method demonstrated outstanding performance by validating and comparing the detection results of the Yinli Shoal. Moreover, the expected results are obtained by applying this method to other coral shoals in the Xisha Islands, including the Binmei Shoal, Beibianlang, Zhanhan Shoal, Shanhudong Shoal, and Yongnan Shoal. This detection method is expected to provide the coral shoals’ information rapidly once optical satellite images are available and cloud cover and tropical cyclones are satisfactory. The further integration of the detection results of coral shoals with water depth and other information can effectively ensure the safe navigation of ships. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

Back to TopTop