Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = troglodytidae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1216 KiB  
Article
Living Together, Singing Together: Revealing Similar Patterns of Vocal Activity in Two Tropical Songbirds Applying BirdNET
by David Amorós-Ausina, Karl-L. Schuchmann, Marinez I. Marques and Cristian Pérez-Granados
Sensors 2024, 24(17), 5780; https://doi.org/10.3390/s24175780 - 5 Sep 2024
Cited by 3 | Viewed by 2212
Abstract
In recent years, several automated and noninvasive methods for wildlife monitoring, such as passive acoustic monitoring (PAM), have emerged. PAM consists of the use of acoustic sensors followed by sound interpretation to obtain ecological information about certain species. One challenge associated with PAM [...] Read more.
In recent years, several automated and noninvasive methods for wildlife monitoring, such as passive acoustic monitoring (PAM), have emerged. PAM consists of the use of acoustic sensors followed by sound interpretation to obtain ecological information about certain species. One challenge associated with PAM is the generation of a significant amount of data, which often requires the use of machine learning tools for automated recognition. Here, we couple PAM with BirdNET, a free-to-use sound algorithm to assess, for the first time, the precision of BirdNET in predicting three tropical songbirds and to describe their patterns of vocal activity over a year in the Brazilian Pantanal. The precision of the BirdNET method was high for all three species (ranging from 72 to 84%). We were able to describe the vocal activity patterns of two of the species, the Buff-breasted Wren (Cantorchilus leucotis) and Thrush-like Wren (Campylorhynchus turdinus). Both species presented very similar vocal activity patterns during the day, with a maximum around sunrise, and throughout the year, with peak vocal activity occurring between April and June, when food availability for insectivorous species may be high. Further research should improve our knowledge regarding the ability of coupling PAM with BirdNET for monitoring a wider range of tropical species. Full article
(This article belongs to the Special Issue Advanced Acoustic Sensing Technology)
Show Figures

Figure 1

14 pages, 3738 KiB  
Article
Description of the Three Complete Mitochondrial Genomes of Sitta (S. himalayensis, S. nagaensis, and S. yunnanensis) and Phylogenetic Relationship (Aves: Sittidae)
by Qingmiao Yuan, Qiang Guo, Jing Cao, Xu Luo and Yubao Duan
Genes 2023, 14(3), 589; https://doi.org/10.3390/genes14030589 - 26 Feb 2023
Cited by 7 | Viewed by 1943
Abstract
Nuthatches (genus Sitta; family Sittidae) are a passerine genus with a predominantly Nearctic and Eurasian distribution. To understand the phylogenetic position of Sitta and phylogenetic relations within this genus, we sequenced the complete mitochondrial genomes of three Sitta species (S. himalayensis [...] Read more.
Nuthatches (genus Sitta; family Sittidae) are a passerine genus with a predominantly Nearctic and Eurasian distribution. To understand the phylogenetic position of Sitta and phylogenetic relations within this genus, we sequenced the complete mitochondrial genomes of three Sitta species (S. himalayensis, S. nagaensis, and S. yunnanensis), which were 16,822–16,830 bp in length and consisted of 37 genes and a control region. This study recovered the same gene arrangement found in the mitogenomes of Gallus gallus, which is considered the typical ancestral avian gene order. All tRNAs were predicted to form the typical cloverleaf secondary structures. Bayesian inference and maximum likelihood phylogenetic analyses of sequences of 18 species obtained a well-supported topology. The family Sittidae is the sister group of Troglodytidae, and the genus Sitta can be divided into three major clades. We demonstrated the phylogenetic relationships within the genus Sitta (S. carolinensis + ((S. villosa + S. yunnanensis) + (S. himalayensis + (S. europaea + S. nagaensis)))). Full article
(This article belongs to the Special Issue Wildlife Genomics and Genetic Diversity)
Show Figures

Figure 1

16 pages, 2980 KiB  
Article
Mitogenomic Codon Usage Patterns of Superfamily Certhioidea (Aves, Passeriformes): Insights into Asymmetrical Bias and Phylogenetic Implications
by Hengwu Ding, De Bi, Shiyun Han, Ran Yi, Sijia Zhang, Yuanxin Ye, Jinming Gao, Jianke Yang and Xianzhao Kan
Animals 2023, 13(1), 96; https://doi.org/10.3390/ani13010096 - 27 Dec 2022
Cited by 11 | Viewed by 2554
Abstract
The superfamily Certhioidea currently comprises five families. Due to the rapid diversification, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new complete mitogenomes of Certhioidea [...] Read more.
The superfamily Certhioidea currently comprises five families. Due to the rapid diversification, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new complete mitogenomes of Certhioidea (Certhia americana, C. familiaris, Salpornis spilonota, Cantorchilus leucotis, Pheugopedius coraya, and Pheugopedius genibarbis). We further paid attention to the genomic characteristics, codon usages, evolutionary rates, and phylogeny of the Certhioidea mitogenomes. All mitogenomes we analyzed displayed typical ancestral avian gene order with 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and one control region (CR). Our study indicated the strand-biased compositional asymmetry might shape codon usage preferences in mitochondrial genes. In addition, natural selection might be the main factor in shaping the codon usages of genes. Additionally, evolutionary rate analyses indicated all mitochondrial genes were under purifying selection. Moreover, MT-ATP8 and MT-CO1 were the most rapidly evolving gene and conserved genes, respectively. According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae were strongly supported. Importantly, we suggest that Salpornis should be separated from Certhiidae and put into Salpornithidae to maintain the monophyly of Certhiidae. Our findings are useful for further evolutionary studies within Certhioidea. Full article
Show Figures

Figure 1

8 pages, 1383 KiB  
Brief Report
Direct Chromosome Preparation Method in Avian Embryos for Cytogenetic Studies: Quick, Easy and Cheap
by Suziane Alves Barcellos, Marcelo Santos de Souza, Victoria Tura, Larissa Rodrigues Pereira, Rafael Kretschmer, Ricardo José Gunski and Analía Del Valle Garnero
DNA 2022, 2(1), 22-29; https://doi.org/10.3390/dna2010002 - 26 Jan 2022
Cited by 4 | Viewed by 6530
Abstract
Avian cell culture is widely applied for cytogenetic studies, the improvement of which increasingly allows for the production of high-quality chromosomes, essential to perform both classical and molecular cytogenetic studies. Among these approaches, there are two main types: fibroblast and bone marrow culture. [...] Read more.
Avian cell culture is widely applied for cytogenetic studies, the improvement of which increasingly allows for the production of high-quality chromosomes, essential to perform both classical and molecular cytogenetic studies. Among these approaches, there are two main types: fibroblast and bone marrow culture. Despite its high cost and complexity, fibroblast culture is considered the superior approach due to the quality of the metaphases produced. Short-term bone marrow cultivation provides more condensed chromosomes but nonetheless is quicker and easier. In the search for a quicker, cheaper way to prepare metaphases without losing quality, the present work developed a novel, widely applicable protocol for avian chromosome preparation. Twenty-one bird embryos from distinct families were sampled: Icteridae, Columbidae, Furnariidae, Estrildidae, Thraupidae, Troglodytidae and Ardeidae. The protocol was based on a combination of modified fibroblast culture and bone marrow cultivation, taking the advantages of both. The results show that all species consistently presented good mitotic indexes and high-quality chromosomes. Overall, the application of this protocol for bird cytogenetics can optimize the time, considering that most fibroblast cultures take at least 3 days and often much longer. However, our protocol can be performed in 3 h with a much-reduced cost of reagents and equipment. Full article
Show Figures

Graphical abstract

Back to TopTop