Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = trifluoromethyl dehydrozingerone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 19509 KB  
Article
Scaffold Hopping from Dehydrozingerone: Design, Synthesis, and Antifungal Activity of Phenoxyltrifluoromethylpyridines
by Xiaohui Nan, Kaifeng Wang, Xinru Sun, Zhan Hu and Ranfeng Sun
Int. J. Mol. Sci. 2025, 26(11), 5345; https://doi.org/10.3390/ijms26115345 - 2 Jun 2025
Viewed by 886
Abstract
In response to the urgent need for innovative fungicides to ensure food security and safety, a series of twenty-three novel trifluoromethylpyridine compounds were designed and synthesized using a scaffold hopping strategy derived from dehydrozingerone. This approach involved converting the α, β-unsaturated ketone moiety [...] Read more.
In response to the urgent need for innovative fungicides to ensure food security and safety, a series of twenty-three novel trifluoromethylpyridine compounds were designed and synthesized using a scaffold hopping strategy derived from dehydrozingerone. This approach involved converting the α, β-unsaturated ketone moiety into a pyridine ring. Bioassay results indicated that the majority of these compounds exhibited promising in vitro antifungal activity, particularly against Rhizoctonia solani and Colletotrichum musae. Notably, compound 17 showed the highest efficacy and broad-spectrum activity, with median effective concentrations (EC50) ranging from 2.88 to 9.09 μg/mL. Phenoxytrifluoromethylpyridine derivatives, including compound 17, exhibited superior antifungal activity compared to benzyloxytrifluoromethylpyridine derivatives. In vivo tests revealed that both compounds 17 and 23 exhibited moderate control effects against C. musae. The degradation half-lives of compounds 17 and 23 in bananas were determined to be 176.9 h and 94.8 h, respectively, indicating the stability of their structures in the environment. Molecular docking studies indicated that compound 23 interacts with succinate dehydrogenase, offering valuable insights for the structural optimization of compound 23. Full article
(This article belongs to the Special Issue Green Chemical Pesticide Design, Synthesis and Evaluation)
Show Figures

Graphical abstract

Back to TopTop