Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = triangular FMCW Lidar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 40150 KiB  
Article
Optical Frequency Sweeping Nonlinearity Measurement Based on a Calibration-free MZI
by Pengwei Sun, Bin Zhao and Bo Liu
Remote Sens. 2024, 16(24), 4766; https://doi.org/10.3390/rs16244766 - 20 Dec 2024
Cited by 1 | Viewed by 1045
Abstract
Frequency sweeping linearity is essential for Frequency-Modulated Continuous Wave (FMCW) Light Detection and Ranging (LIDAR), as it impacts the ranging resolution and accuracy of the system. Pre-distortion methods can correct for frequency sweeping nonlinearity; however, residual minor nonlinearities can still degrade the system [...] Read more.
Frequency sweeping linearity is essential for Frequency-Modulated Continuous Wave (FMCW) Light Detection and Ranging (LIDAR), as it impacts the ranging resolution and accuracy of the system. Pre-distortion methods can correct for frequency sweeping nonlinearity; however, residual minor nonlinearities can still degrade the system ranging resolution, especially at far distances. Therefore, the precise measurement of minor nonlinearities is particularly essential for long-range FMCW LIDAR. This paper proposes a calibration-free MZI for measuring optical frequency sweeping nonlinearity, which involves alternately inserting two short polarization-maintaining fibers with different delays into one arm of an MZI, and after two rounds of beat collection, the optical frequency sweep curve of the light source is accurately measured for nonlinearity evaluation. Using the proposed method, the nonlinearity of a frequency-swept laser source is measured to be 0.2113%, and the relative nonlinearity is 5.3560 × 10−5. With the measured frequency sweep curve, we simulate the beat signal and compare it with the collected beat signal in time and frequency domain, to verify the accuracy of the proposed method. A test conducted at 24.1 °C, 30.4 °C, 39.5 °C and 44.0 °C demonstrate the method’s insensitivity to temperature fluctuations. Based on the proposed MZI, a tunable laser is pre-distorted and then used as light source of a FMCW lidar. A wall at 45 m and a building at 1.2 km are ranged by the lidar respectively. Before and after laser pre-distortion, the FWHM of echo beat spectrum are 25.635 kHz and 9.736 kHz for 45 m, 747.880 kHz and 22.012 kHz for 1.2 km. Full article
Show Figures

Figure 1

23 pages, 11730 KiB  
Article
Time-Varying Vibration Compensation Based on Segmented Interference for Triangular FMCW LiDAR Signals
by Rongrong Wang, Bingnan Wang, Yachao Wang, Wei Li, Zhongbin Wang and Maosheng Xiang
Remote Sens. 2021, 13(19), 3803; https://doi.org/10.3390/rs13193803 - 23 Sep 2021
Cited by 8 | Viewed by 2794
Abstract
Frequency modulation continuous wave (FMCW) light detection and ranging (LiDAR) 3D imaging system may suffer from time-varying vibrations which will affect the accuracy of ranging and imaging of a target. The system uses only a single-period FMCW LiDAR signal to measure the range [...] Read more.
Frequency modulation continuous wave (FMCW) light detection and ranging (LiDAR) 3D imaging system may suffer from time-varying vibrations which will affect the accuracy of ranging and imaging of a target. The system uses only a single-period FMCW LiDAR signal to measure the range of each spot; however, traditional methods may not work well to compensate for the time-varying vibrations in a single period because they generally assume the vibration velocity is constant. To solve this problem, we propose a time-varying vibration compensation method based on segmented interference. We first derive the impact of time-varying vibrations on the range measurement of the FMCW LiDAR system, in which we divide the time-varying vibration errors into primary errors caused by the vibrations with a constant velocity and quadratic errors. Second, we estimate the coefficients of quadratic vibration errors by using a segmented interference method and build a quadratic compensation filter to eliminate the quadratic vibration errors from the original signals. Finally, we use the symmetrical relations of signals in a triangular FMCW period to estimate the vibration velocity and establish a primary compensation filter to eliminate the primary vibration errors. Numerical tests verify the applicability of this method in eliminating time-varying vibration errors with only a one-period triangular FMCW signal and its superiority over traditional methods. Full article
Show Figures

Graphical abstract

26 pages, 5010 KiB  
Article
Simultaneous Time-Varying Vibration and Nonlinearity Compensation for One-Period Triangular-FMCW Lidar Signal
by Rongrong Wang, Bingnan Wang, Maosheng Xiang, Chuang Li, Shuai Wang and Chong Song
Remote Sens. 2021, 13(9), 1731; https://doi.org/10.3390/rs13091731 - 29 Apr 2021
Cited by 20 | Viewed by 3573
Abstract
Frequency modulation continuous wave (FMCW) Lidar inevitably suffers from vibration and nonlinear frequency modulation, which influences the ranging and imaging results. In this paper, we analyze the impact of vibration error coupled with nonlinearity error on ranging for FMCW Lidar, and propose a [...] Read more.
Frequency modulation continuous wave (FMCW) Lidar inevitably suffers from vibration and nonlinear frequency modulation, which influences the ranging and imaging results. In this paper, we analyze the impact of vibration error coupled with nonlinearity error on ranging for FMCW Lidar, and propose a purely theoretical approach that simultaneously compensates for time-varying vibration and nonlinearity in one-period triangular FMCW (T-FMCW) signals. We first extract the localized characteristics of dechirp signals in time-frequency domain by using a second-order synchro-squeezing transform (second-order SST), and establish an instantaneous ranging model based on second-order SST which can characterize the local distributions of time-varying errors. Second, we estimate the nonlinearity error by using time-frequency information of an auxiliary channel and then preliminarily eliminate the error from the instantaneous measurement range. Finally, we construct a particle filtering (PF) model for T-FMCW using the instantaneous ranging model to compensate for the time-varying vibration error and the residual nonlinearity error, and calculate the range of target by using triangular symmetry relations of T-FMCW. Experimental tests prove that the proposed method can accurately estimate the range of target by compensating for the time-varying vibration and the nonlinearity errors simultaneously in one-period T-FMCW signal. Full article
Show Figures

Graphical abstract

Back to TopTop