Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = transonic laminar flow characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10679 KiB  
Article
Investigation on Transition Characteristics of a Modified RAE5243 Airfoil
by Zhiyong Liu, Hongbiao Wang, Zhao Zhang, Xiang Liu and Fengxue Qian
Energies 2024, 17(6), 1489; https://doi.org/10.3390/en17061489 - 20 Mar 2024
Cited by 1 | Viewed by 1217
Abstract
The transition characteristics of a modified RAE5243 airfoil were investigated using a wind tunnel test and numerical simulations. Transition detection is of great significance for the assessment of drag reduction. In wind tunnel tests, transition location can be detected by infrared thermography. However, [...] Read more.
The transition characteristics of a modified RAE5243 airfoil were investigated using a wind tunnel test and numerical simulations. Transition detection is of great significance for the assessment of drag reduction. In wind tunnel tests, transition location can be detected by infrared thermography. However, in subsonic and transonic wind tunnel tests, the temperature difference between the laminar flow region and turbulent flow region is small. Moreover, the test models are usually made of metals, which make the transition location hard to identify. Combined with infrared thermography, a carbon nanotube heating coating powered by electricity was used to detect the transition location of a modified RAE5243 airfoil wing. The effects of heating power, angle of attack (AOA), and Mach number were studied. The results show that heating power has no impact on transition location. As the AOA increases, the transition location moves forward. With an increase in Mach number, the transition location moves forward first and then backward, and it reaches its most forward point at Ma = 0.75. The results of our numerical simulations indicate that, at Ma 0.75, a shock wave appears on the wing, and the transition is closely related to the shock wave rather than the adverse pressure gradient. Full article
Show Figures

Figure 1

21 pages, 13350 KiB  
Article
Wall-Modeled Large Eddy Simulation and Detached Eddy Simulation of Wall-Mounted Separated Flow via OpenFOAM
by Xiang Ren, Hua Su, Hua-Hua Yu and Zheng Yan
Aerospace 2022, 9(12), 759; https://doi.org/10.3390/aerospace9120759 - 27 Nov 2022
Cited by 15 | Viewed by 5488
Abstract
Considering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow over a [...] Read more.
Considering grid requirements of high Reynolds flow, wall-modeled large eddy simulation (WMLES) and detached eddy simulation (DES) have become the main methods to deal with near-wall turbulence. However, the flow separation phenomenon is a challenge. Three typical separated flows, including flow over a cylinder at ReD = 3900 based on the cylinder diameter, flow over a wall-mounted hump at Rec = 9.36 × 105 based on the hump length, and transonic flow over an axisymmetric bump with shock-induced separation at Rec = 2.763 × 106 based on the bump length, are used to verify WMLES, shear stress transport k-ω DES (SST-DES), and Spalart–Allmaras DES (SA-DES) methods in OpenFOAM. The three flows are increasingly challenging, namely laminar boundary layer separation, turbulent boundary layer separation, and turbulent boundary layer separation under shock interference. The results show that WMLES, SST-DES, and SA-DES methods in OpenFOAM can easily predict the separation position and wake characteristics in the flow around the cylinder, but they rely on the grid scale and turbulent inflow to accurately simulate the latter two flows. The grid requirements of Larsson et al. (δ/Δx,δ/Δy,δ/Δz(12,50,20)) are the basis for simulating turbulent boundary layers upstream of flow separation. A finer mesh (δ/Δx,δ/Δy,δ/Δz(40,75,40)) is required to accurately predict the separation and reattachment. The WMLES method is more sensitive to grid scales than the SA-DES method and fails to obtain flow separation under a coarser grid, while SST-DES method can only describe the vortices generated by the separating shear layer, but not within the turbulent boundary layer, and overestimates the separation-reattachment zone based on the grid system in this paper. Full article
Show Figures

Figure 1

21 pages, 12542 KiB  
Article
Investigation and Design of the Transonic Laminar Flow Characteristics in a Laminar Aircraft
by Xiaotian Niu and Jie Li
Appl. Sci. 2022, 12(22), 11820; https://doi.org/10.3390/app122211820 - 21 Nov 2022
Cited by 2 | Viewed by 4099
Abstract
Reducing drag is critical to aircraft design. In recent years, laminar technology has become one of the most important feasible technologies for civil aircraft drag reduction design under many design constraints. However, various factors have a certain impact on the laminar flow characteristics [...] Read more.
Reducing drag is critical to aircraft design. In recent years, laminar technology has become one of the most important feasible technologies for civil aircraft drag reduction design under many design constraints. However, various factors have a certain impact on the laminar flow characteristics in the state of transonic flight. Therefore, it is necessary to deeply understand the specific effects of various flight parameters on the characteristics of laminar flow. In this paper, a parameter sensitivity analysis for a central experimental wing in a special layout aircraft was carried out to investigate its transonic laminar characteristics. Then, the airfoil of the central experimental wing of the aircraft was designed for real flight. The RANS (Reynold-averaged Navier–Stokes) method combined with the γReθ transition model based on local variables was used. The computational approach was validated by the wind tunnel tests and analyzed by the grid independence analysis. The sensitivity mainly focuses on the transition location and the length of the laminar flow zone of the central experiment under different boundary conditions. The transonic transition was affected by a variety of interacting factors that include FSTI (free stream turbulence intensity), pressure gradient, Re (Reynolds number), Ma (Mach number) and α (angle of attack, degree). The essence of the transition is the disruption of flow stability caused by the increase in flow entropy. Among these factors, FSTI directly affects global flow stability, and the pressure gradient affects local flow stability. Ma and α can indirectly affect the flow stability by changing the pressure gradient. Re can control the boundary layer properties to change the flow stability, whereas its effect is easily determined by the pressure gradient. Finally, the improved design of the airfoil with the central experimental wing was conducted. The design of weak shock wave and aerodynamic load on the rear part of the airfoil can improve the aerodynamic characteristics (CL, lift coefficient, increases by 0.28) of the airfoil, which can reduce the load burden on the outboard wing without affecting the laminar flow characteristics of the airfoil. In the next step, cross-flow instability will be considered. Full article
(This article belongs to the Special Issue Aerodynamics and Aeroacoustics)
Show Figures

Figure 1

Back to TopTop