Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = time fractional SPIDEs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 389 KiB  
Article
Temporal Fractal Nature of the Time-Fractional SPIDEs and Their Gradient
by Wensheng Wang
Fractal Fract. 2023, 7(11), 815; https://doi.org/10.3390/fractalfract7110815 - 11 Nov 2023
Viewed by 1555
Abstract
Fractional and high-order PDEs have become prominent in theory and in the modeling of many phenomena. In this article, we study the temporal fractal nature for fourth-order time-fractional stochastic partial integro-differential equations (TFSPIDEs) and their gradients, which are driven in one-to-three dimensional spaces [...] Read more.
Fractional and high-order PDEs have become prominent in theory and in the modeling of many phenomena. In this article, we study the temporal fractal nature for fourth-order time-fractional stochastic partial integro-differential equations (TFSPIDEs) and their gradients, which are driven in one-to-three dimensional spaces by space–time white noise. By using the underlying explicit kernels, we prove the exact global temporal continuity moduli and temporal laws of the iterated logarithm for the TFSPIDEs and their gradients, as well as prove that the sets of temporal fast points (where the remarkable oscillation of the TFSPIDEs and their gradients happen infinitely often) are random fractals. In addition, we evaluate their Hausdorff dimensions and their hitting probabilities. It has been confirmed that these points of the TFSPIDEs and their gradients, in time, are most likely one everywhere, and are dense with the power of the continuum. Moreover, their hitting probabilities are determined by the target set B’s packing dimension dimp(B). On the one hand, this work reinforces the temporal moduli of the continuity and temporal LILs obtained in relevant literature, which were achieved by obtaining the exact values of their normalized constants; on the other hand, this work obtains the size of the set of fast points, as well as a potential theory of TFSPIDEs and their gradients. Full article
13 pages, 306 KiB  
Article
Spatial Moduli of Non-Differentiability for Time-Fractional SPIDEs and Their Gradient
by Wensheng Wang
Symmetry 2021, 13(3), 380; https://doi.org/10.3390/sym13030380 - 26 Feb 2021
Cited by 2 | Viewed by 1515
Abstract
High order and fractional PDEs have become prominent in theory and in modeling many phenomena. In this paper, we study spatial moduli of non-differentiability for the fourth order time fractional stochastic partial integro-differential equations (SPIDEs) and their gradient, driven by space-time white noise. [...] Read more.
High order and fractional PDEs have become prominent in theory and in modeling many phenomena. In this paper, we study spatial moduli of non-differentiability for the fourth order time fractional stochastic partial integro-differential equations (SPIDEs) and their gradient, driven by space-time white noise. We use the underlying explicit kernels and spectral/harmonic analysis, yielding spatial moduli of non-differentiability for time fractional SPIDEs and their gradient. On one hand, this work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. On the other hand, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of time fractional SPIDEs and their gradient. Full article
Back to TopTop