Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = through-wall bending stresses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3737 KiB  
Article
The Application of Numerical Ductile Fracture Simulation in the LBB Evaluation of Nuclear Pipes
by Yuxuan Fang, Biao Li, Chang-Sung Seok and Tao Shen
Appl. Sci. 2025, 15(13), 7010; https://doi.org/10.3390/app15137010 - 21 Jun 2025
Viewed by 300
Abstract
The leak-before-break (LBB) concept is widely used in the design and estimation of piping systems of nuclear power plants, which requires considerable test work to obtain the fracture resistance (J-R) curves of nuclear pipes. The application of numerical ductile fracture simulation can effectively [...] Read more.
The leak-before-break (LBB) concept is widely used in the design and estimation of piping systems of nuclear power plants, which requires considerable test work to obtain the fracture resistance (J-R) curves of nuclear pipes. The application of numerical ductile fracture simulation can effectively limit the test work. In this study, an extended stress-modified critical strain (SMCS) model is applied to simulate the crack growth behaviors of full-scale nuclear pipes (SA312 TP304L stainless steel) with a circumferential through-wall crack under a four-point bending load. The LBB evaluation is performed based on the J-R curves of CT specimens and full-scale pipes obtained from fracture resistance tests and numerical simulations. It shows that due to the high crack-tip constraint effect, CT specimens may cause lots of conservatism in the LBB evaluation of nuclear pipes, while the application of numerical ductile fracture simulation can largely reduce the conservatism. Full article
Show Figures

Figure 1

16 pages, 6465 KiB  
Article
The Effect of Heavy-Duty Vehicle Crossings on the State of Stress of Buried Pipelines
by Ľubomír Gajdoš, Martin Šperl, Jan Kec and Petr Crha
Metals 2022, 12(1), 153; https://doi.org/10.3390/met12010153 - 14 Jan 2022
Cited by 2 | Viewed by 2410
Abstract
The aim of this article is to quantify the loads exerted by heavy-duty vehicles when crossing over buried pipeline. This problem arises in connection to the question pertaining to the use of protective sleeves (casings) applied to gas pipelines in regions with increased [...] Read more.
The aim of this article is to quantify the loads exerted by heavy-duty vehicles when crossing over buried pipeline. This problem arises in connection to the question pertaining to the use of protective sleeves (casings) applied to gas pipelines in regions with increased demands on pipeline operation safety. An experiment was conducted on a test pipe section made from L360NE pipeline steel equipped with strain gauges along the pipe perimeter, measuring strains in the axial and circumferential directions. Strain measurements were taken after back-filling the pipe trench, then during vehicle crossings over the empty pipe, and again after pressurizing the test pipe with air. Strain-based hoop stresses at the surface of the empty test pipe were found to exceed 30 MPa after back-filling the trench and increased to more than 40 MPa during the vehicle crossings. Similarly, axial stresses reached extremes of around 17 MPa in compression and 12 MPa in tension. Applying internal air pressure to the test pipe resulted in a reduced net effect on both the hoop and axial stresses. Full article
Show Figures

Figure 1

Back to TopTop