Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = three-phase lag bioheat transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4144 KiB  
Article
Three-Phase-Lag Bio-Heat Transfer Model of Cardiac Ablation
by Sundeep Singh, Paola Saccomandi and Roderick Melnik
Fluids 2022, 7(5), 180; https://doi.org/10.3390/fluids7050180 - 21 May 2022
Cited by 17 | Viewed by 3352
Abstract
Significant research efforts have been devoted in the past decades to accurately modelling the complex heat transfer phenomena within biological tissues. These modeling efforts and analysis have assisted in a better understanding of the intricacies of associated biological phenomena and factors that affect [...] Read more.
Significant research efforts have been devoted in the past decades to accurately modelling the complex heat transfer phenomena within biological tissues. These modeling efforts and analysis have assisted in a better understanding of the intricacies of associated biological phenomena and factors that affect the treatment outcomes of hyperthermic therapeutic procedures. In this contribution, we report a three-dimensional non-Fourier bio-heat transfer model of cardiac ablation that accounts for the three-phase-lags (TPL) in the heat propagation, viz., lags due to heat flux, temperature gradient, and thermal displacement gradient. Finite element-based COMSOL Multiphysics software has been utilized to predict the temperature distributions and ablation volumes. A comparative analysis has been conducted to report the variation in the treatment outcomes of cardiac ablation considering different bio-heat transfer models. The effect of variations in the magnitude of different phase lags has been systematically investigated. The fidelity and integrity of the developed model have been evaluated by comparing the results of the developed model with the analytical results of the recent studies available in the literature. This study demonstrates the importance of considering non-Fourier lags within biological tissue for predicting more accurately the characteristics important for the efficient application of thermal therapies. Full article
(This article belongs to the Special Issue Cardiovascular Hemodynamics)
Show Figures

Figure 1

11 pages, 1926 KiB  
Article
Analytical Estimation of Temperature in Living Tissues Using the TPL Bioheat Model with Experimental Verification
by Aatef Hobiny, Faris Alzahrani and Ibrahim Abbas
Mathematics 2020, 8(7), 1188; https://doi.org/10.3390/math8071188 - 19 Jul 2020
Cited by 45 | Viewed by 3471
Abstract
The aim of this study is to propose the analytical method associated with Laplace transforms and experimental verification to estimate thermal damages and temperature due to laser irradiation by utilizing measurement information of skin surface. The thermal damages to the tissues are totally [...] Read more.
The aim of this study is to propose the analytical method associated with Laplace transforms and experimental verification to estimate thermal damages and temperature due to laser irradiation by utilizing measurement information of skin surface. The thermal damages to the tissues are totally estimated by denatured protein ranges using the formulations of Arrhenius. By using Laplace transformations, the exact solution of all physical variables is obtained. Numerical results for the temperature and thermal damage are presented graphically. Furthermore, the comparisons between the numerical calculations with experimental verification show that the three-phase lag bioheat mathematical model is an efficient tool for estimating the bioheat transfer in skin tissue. Full article
(This article belongs to the Special Issue Modelling and Analysis in Biomathematics)
Show Figures

Figure 1

23 pages, 2929 KiB  
Article
A Study on Non-Linear DPL Model for Describing Heat Transfer in Skin Tissue during Hyperthermia Treatment
by Sunil Kumar Sharma and Dinesh Kumar
Entropy 2020, 22(4), 481; https://doi.org/10.3390/e22040481 - 22 Apr 2020
Cited by 19 | Viewed by 4622
Abstract
The article studies the simulation-based mathematical modeling of bioheat transfer under the Dirichlet boundary condition. We used complex non-linear dual-phase-lag bioheat transfer (DPLBHT) for analyzing the temperature distribution in skin tissues during hyperthermia treatment of infected cells. The perfusion term, metabolic heat source, [...] Read more.
The article studies the simulation-based mathematical modeling of bioheat transfer under the Dirichlet boundary condition. We used complex non-linear dual-phase-lag bioheat transfer (DPLBHT) for analyzing the temperature distribution in skin tissues during hyperthermia treatment of infected cells. The perfusion term, metabolic heat source, and external heat source were the three parts of the volumetric heat source that were used in the model. The non-linear DPLBHT model predicted a more accurate temperature within skin tissues. The finite element Runge–Kutta (4,5) (FERK (4,5)) method, which was based on two techniques, finite difference and Runge–Kutta (4,5), was applied for calculating the result in the case of our typical non-linear problem. The paper studies and presents the non-dimensional unit. Thermal damage of normal tissue was observed near zero during hyperthermia treatment. The effects of the non-dimensional time, non-dimensional space coordinate, location parameter, regional parameter, relaxation and thermalization time, metabolic heat source, associated metabolic heat source parameter, perfusion rate, associated perfusion heat source parameter, and external heat source coefficient on the dimensionless temperature profile were studied in detail during the hyperthermia treatment process. Full article
(This article belongs to the Special Issue Biological Statistical Mechanics)
Show Figures

Figure 1

Back to TopTop