Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = thin plastic scintillator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7689 KiB  
Article
Ultra-Thin Plastic Scintillator-Based Proton Detector for Timing Applications
by Mauricio Rodríguez Ramos, Javier García López, Michael Seimetz, Jessica Juan Morales, Carmen Torres Muñoz and María del Carmen Jiménez Ramos
Sensors 2025, 25(3), 971; https://doi.org/10.3390/s25030971 - 6 Feb 2025
Viewed by 1523
Abstract
The development of advanced detection systems for charged particles in laser-based accelerators and the need for precise time of flight measurements have led to the creation of detectors using ultra-thin plastic scintillators, indicating their use as transmission detectors with low energy loss and [...] Read more.
The development of advanced detection systems for charged particles in laser-based accelerators and the need for precise time of flight measurements have led to the creation of detectors using ultra-thin plastic scintillators, indicating their use as transmission detectors with low energy loss and minimal dispersion for protons around a few MeV. This study introduces a new detection system designed by the Institute for Instrumentation in Molecular Imaging for time of flight and timing applications at the National Accelerator Center in Seville. The system includes an ultra-thin EJ-214 plastic scintillator coupled with a photomultiplier tube and shielded by aluminized mylar sheets. The prototype installation as an external trigger system at the ion beam nuclear microprobe of the aforementioned facility, along with its temporal performance and ion transmission, was thoroughly characterized. Additionally, the scintillator thickness and uniformity were analyzed using Rutherford backscattering spectrometry. Results showed that the experimental thickness of the EJ-214 sheet differs by approximately 46% from the supplier specifications. The detector response to MeV protons demonstrates a strong dependence on the impact position but remains mostly linear with the applied working bias. Finally, single ion detection was successfully achieved, demonstrating the applicability of this new system as a diagnostic tool. Full article
(This article belongs to the Special Issue Advances in Particle Detectors and Radiation Detectors)
Show Figures

Figure 1

10 pages, 5685 KiB  
Article
Improvement and Characterisation of the ArCLight Large-Area Dielectric Light Detector for Liquid-Argon Time Projection Chambers
by Jonas Bürgi, Livio Calivers, Richard Diurba, Fabian Frieden, Anja Gauch, Laura Francesca Iacob, Igor Kreslo, Jan Kunzmann, Saba Parsa and Michele Weber
Instruments 2024, 8(4), 48; https://doi.org/10.3390/instruments8040048 - 4 Nov 2024
Viewed by 1506
Abstract
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for [...] Read more.
The detection of scintillation light in noble-liquid detectors is necessary for identifying neutrino interaction candidates from beam, astrophysical, or solar sources. Large monolithic detectors typically have highly efficient light sensors, like photomultipliers, mounted outside their electric field. This option is not available for modular detectors that wish to maximize their active volume. The ArgonCube light readout system detectors (ArCLights) are large-area thin-wavelength-shifting (WLS) panels that can operate in highly proximate modular detectors and within the electric field. The WLS plastic forming the bulk structure of the ArCLight has Tetraphenyl Butadiene (TPB) and sheets of dichroic mirror layered across its surface. It is coupled to a set of six silicon photomultipliers (SiPMs). This publication compares TPB coating techniques for large surface areas and describes quality control methods for large-scale production. Full article
Show Figures

Figure 1

8 pages, 3476 KiB  
Article
Radiation Damage in Polyethylene Naphthalate Thin-Film Scintillators
by Marcello Campajola, Francesco Di Capua, Pierluigi Casolaro, Ettore Sarnelli and Alberto Aloisio
Materials 2022, 15(19), 6530; https://doi.org/10.3390/ma15196530 - 21 Sep 2022
Cited by 6 | Viewed by 2273
Abstract
This paper describes the scintillation features and the radiation damage in polyethylene naphthalate 100 µm-thick scintillators irradiated with an 11 MeV proton beam and with a 1 MeV electron beam at doses up to 15 and 85 Mrad, respectively. The scintillator emission spectrum, [...] Read more.
This paper describes the scintillation features and the radiation damage in polyethylene naphthalate 100 µm-thick scintillators irradiated with an 11 MeV proton beam and with a 1 MeV electron beam at doses up to 15 and 85 Mrad, respectively. The scintillator emission spectrum, optical transmission, light yield loss, and scintillation pulse decay times were investigated before and after the irradiation. A deep blue emission spectrum peaked at 422 nm, and fast and slow scintillation decay time constants of the order of 1–2 ns and 25–30 nm, respectively, were measured. After irradiation, transmittance showed a loss of transparency for wavelengths between 380 and 420 nm, and a light yield reduction of ~40% was measured at the maximum dose of 85 Mrad. Full article
(This article belongs to the Special Issue Nuclear Physics: Effects of Radiation on Materials)
Show Figures

Figure 1

11 pages, 2568 KiB  
Article
Characterization of Flexible Amorphous Silicon Thin-Film Transistor-Based Detectors with Positive-Intrinsic-Negative Diode in Radiography
by Bongju Han, Minji Park, Kyuseok Kim and Youngjin Lee
Diagnostics 2022, 12(9), 2103; https://doi.org/10.3390/diagnostics12092103 - 30 Aug 2022
Cited by 6 | Viewed by 2422
Abstract
Low-dose exposure and work convenience are required for mobile X-ray systems during the COVID-19 pandemic. We investigated a novel X-ray detector (FXRD-4343FAW, VIEWORKS, Anyang, Korea) composed of a thin-film transistor based on amorphous silicon with a flexible plastic substrate. This detector is composed [...] Read more.
Low-dose exposure and work convenience are required for mobile X-ray systems during the COVID-19 pandemic. We investigated a novel X-ray detector (FXRD-4343FAW, VIEWORKS, Anyang, Korea) composed of a thin-film transistor based on amorphous silicon with a flexible plastic substrate. This detector is composed of a thallium-doped cesium iodide scintillator with a pixel size of 99 μm, pixel matrix of 4316 × 4316, and weight of 2.95 kg. The proposed detector has the advantages of high-noise characteristics and low weight, which provide patients and workers with an advantage in terms of the dose and work efficiency, respectively. We performed a quantitative evaluation and an experiment to demonstrate its viability. The modulation transfer function, noise power spectrum, and detective quantum efficiency were identified using the proposed and comparative detectors, according to the International Electrotechnical Commission protocol. Additionally, the contrast-to-noise ratio and coefficient of variation were investigated using a human-like phantom. Our results indicate that the proposed detector efficiently increases the image performance in terms of noise characteristics. The detailed performance evaluation demonstrated that the outcomes of the use of the proposed detector confirmed the viability of mobile X-ray devices that require low doses. Consequently, the novel FXRD-4343FAW X-ray detector is expected to improve the image quality and work convenience in extended radiography. Full article
(This article belongs to the Special Issue Advances in Diagnostic Medical Imaging)
Show Figures

Figure 1

12 pages, 1154 KiB  
Article
Feasibility of Ultra-Thin Fiber-Optic Dosimeters for Radiotherapy Dosimetry
by Bongsoo Lee, Guwon Kwon, Sang Hun Shin, Jaeseok Kim, Wook Jae Yoo, Young Hoon Ji and Kyoung Won Jang
Sensors 2015, 15(11), 29003-29014; https://doi.org/10.3390/s151129003 - 17 Nov 2015
Cited by 5 | Viewed by 5213
Abstract
In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types [...] Read more.
In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution. With the ultra-thin fiber-optic dosimeters, surface doses for gamma rays generated from a Co-60 therapy machine were measured. Additionally, percentage depth doses in the build-up regions were obtained by using the ultra-thin fiber-optic dosimeters, and the results were compared with those of external beam therapy films and a conventional fiber-optic dosimeter. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop