Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = the Litang fault

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 22788 KB  
Article
Structural Deformation Style and Seismic Potential of the Maoyaba Fault, Southeastern Margin of the Tibet Plateau
by Xianbing Zhang, Ning Zhong, Xiao Yu, Guifang Yang and Haibing Li
Remote Sens. 2025, 17(7), 1288; https://doi.org/10.3390/rs17071288 - 4 Apr 2025
Viewed by 933
Abstract
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the [...] Read more.
The southeastern margin of the Tibet Plateau represents one of the most seismically active zones in China and serves as a natural laboratory for investigating the uplift dynamics and lateral expansion mechanisms of the plateau. The Litang fault zone (LTFZ) lies within the northwest Sichuan sub-block on the southeastern margin of the Tibet Plateau, running almost parallel to the Xianshuihe fault zone and forming a V-shaped conjugate structure system with the Batang fault zone (BTFZ). The Maoyaba fault (MYBF) is a significant component of the northwestern part of the LTFZ, exhibiting activity in the late Quaternary. It triggered the ancient Luanshibao landslide and caused the Litang earthquake in 1729 AD, demonstrating intense seismic activity. Employing high-resolution remote sensing interpretation, field surveys, UAV photogrammetry, and UAV LiDAR, this study further examines the geometric distribution and kinematic properties of the MYBF, as well as paleoearthquake events recorded by the fault scarps. Combined with the geometric distribution and kinematic properties of the Hagala fault (HGLF) and Zimeihu fault (ZMHF), this study discusses the late Quaternary structural deformation style and seismic potential of the MYBF. The MYBF could produce earthquakes of approximately Mw 6.7 ± 0.3, with an average co-seismic slip of about 0.68 m and an average recurrence interval of strong earthquakes since the late Quaternary ranging from 0.9 to 1.1 ky. The likelihood of surface rupture earthquakes occurring in the near future is low; however, the expansion of the HGLF could induce moderate to strong earthquakes in the MYB area. The variation in the local tectonic stress field, which is influenced by the Litang–Batang V-shaped structure system and lithological differences, results in the formation of an extensional horsetail structure in the northwestern segment of the LTFZ. Both the HGLF and ZMHF remain active faults. Under the influence of nearly north–south tensile stress, these faults and the Litang–Batang V-shaped structure system collectively regulate the movement of regional crustal material. Full article
Show Figures

Figure 1

18 pages, 8412 KB  
Article
Geophysics and Geochemistry Reveal the Formation Mechanism of the Kahui Geothermal Field in Western Sichuan, China
by Zhilong Liu, Gaofeng Ye, Huan Wang, Hao Dong, Bowen Xu and Huailiang Zhu
Minerals 2025, 15(4), 339; https://doi.org/10.3390/min15040339 - 25 Mar 2025
Viewed by 838
Abstract
This study investigated the formation mechanism of the Kahui Geothermal Field in Western Sichuan, China, using geophysical and geochemical approaches to elucidate its geological structure and geothermal origins. This study employed a combination of 2D and 3D inversion techniques involved in natural electromagnetic [...] Read more.
This study investigated the formation mechanism of the Kahui Geothermal Field in Western Sichuan, China, using geophysical and geochemical approaches to elucidate its geological structure and geothermal origins. This study employed a combination of 2D and 3D inversion techniques involved in natural electromagnetic methods (magnetotelluric, MT, and audio magnetotelluric, AMT) along with the analysis of hydrogeochemical samples to achieve a comprehensive understanding of the geothermal system. Geophysical inversion revealed a three-layer resistivity structure within the upper 2.5 km of the study area. A geological interpretation was conducted on the resistivity structure model, identifying two faults, the Litang Fault and the Kahui Fault. The analysis suggested that the shallow part of the Kahui Geothermal Field is controlled by the Kahui Fault. Hydrochemical analysis showed that the water chemistry of the Kahui Geothermal Field is of the HCO3−Na type, primarily sourced from atmospheric precipitation. The deep heat source of the Kahui Geothermal Field was attributed to the partial melting of the middle crust, driven by the upwelling of mantle fluids. This process provides the necessary thermal energy for the geothermal system. Atmospheric precipitation infiltrates through tectonic fractures, undergoes deep circulation and heating, and interacts with the host rocks. The heated fluids then rise along faults and mix with shallow cold water, ultimately emerging as hot springs. Full article
Show Figures

Figure 1

16 pages, 11253 KB  
Article
Multisensor and Multiscale Data Integration Method of TLS and GPR for Three-Dimensional Detailed Virtual Reconstruction
by Di Zhang, Dinghan Jia, Lili Ren, Jiacun Li, Yan Lu and Haiwei Xu
Sensors 2023, 23(24), 9826; https://doi.org/10.3390/s23249826 - 14 Dec 2023
Cited by 3 | Viewed by 2407
Abstract
Integrated TLS and GPR data can provide multisensor and multiscale spatial data for the comprehensive identification and analysis of surficial and subsurface information, but a reliable systematic methodology associated with data integration of TLS and GPR is still scarce. The aim of this [...] Read more.
Integrated TLS and GPR data can provide multisensor and multiscale spatial data for the comprehensive identification and analysis of surficial and subsurface information, but a reliable systematic methodology associated with data integration of TLS and GPR is still scarce. The aim of this research is to develop a methodology for the data integration of TLS and GPR for detailed, three-dimensional (3D) virtual reconstruction. GPR data and high-precision geographical coordinates at the centimeter level were simultaneously gathered using the GPR system and the Global Navigation Satellite System (GNSS) signal receiver. A time synchronization algorithm was proposed to combine each trace of the GPR data with its position information. In view of the improved propagation model of electromagnetic waves, the GPR data were transformed into dense point clouds in the geodetic coordinate system. Finally, the TLS-based and GPR-derived point clouds were merged into a single point cloud dataset using coordinate transformation. In addition, TLS and GPR (250 MHz and 500 MHz antenna) surveys were conducted in the Litang fault to assess the feasibility and overall accuracy of the proposed methodology. The 3D realistic surface and subsurface geometry of the fault scarp were displayed using the integration data of TLS and GPR. A total of 40 common points between the TLS-based and GPR-derived point clouds were implemented to assess the data fusion accuracy. The difference values in the x and y directions were relatively stable within 2 cm, while the difference values in the z direction had an abrupt fluctuation and the maximum values could be up to 5 cm. The standard deviations (STD) of the common points between the TLS-based and GPR-derived point clouds were 0.9 cm, 0.8 cm, and 2.9 cm. Based on the difference values and the STD in the x, y, and z directions, the field experimental results demonstrate that the GPR-derived point clouds exhibit good consistency with the TLS-based point clouds. Furthermore, this study offers a good future prospect for the integration method of TLS and GPR for comprehensive interpretation and analysis of the surficial and subsurface information in many fields, such as archaeology, urban infrastructure detection, geological investigation, and other fields. Full article
Show Figures

Figure 1

18 pages, 7403 KB  
Article
Identification and Analysis of Unstable Slope and Seasonal Frozen Soil Area along the Litang Section of the Sichuan–Tibet Railway, China
by Yuanjian Wang, Ximin Cui, Yuhang Che, Peixian Li, Yue Jiang and Xiaozhan Peng
Remote Sens. 2023, 15(5), 1317; https://doi.org/10.3390/rs15051317 - 27 Feb 2023
Cited by 5 | Viewed by 2873
Abstract
The Sichuan–Tibet Railway (STR) is currently under construction and serves as an important transportation route in western China. Identifying potential geohazards along the route is important for project construction. However, research on the frozen soil of the Western Sichuan Plateau, and on frozen [...] Read more.
The Sichuan–Tibet Railway (STR) is currently under construction and serves as an important transportation route in western China. Identifying potential geohazards along the route is important for project construction. However, research on the frozen soil of the Western Sichuan Plateau, and on frozen soil identification using interferometric synthetic aperture radar (InSAR) is relatively negligible. As a low-cost, all-weather spatial geodesy tool, InSAR is frequently used for geohazard identification. We selected a study area located along the Litang section of the STR, starting from Litang County in the east and extending 60 km to the west. The geological conditions along the line are complex, with numerous fault zones and hidden danger points for landslide. To identify unstable slopes along the line, distribute scatterer InSAR (DS-InSAR) was used to obtain surface displacement information from 2018 to 2021. Based on the displacement information obtained from the ascending and descending orbit images from Sentinel-1, a spatial density clustering method identified 377 and 388 unstable slopes in the study area, respectively, of these, 132 were consistent. The identified unstable slopes were mostly located in areas with a relatively high altitude and moderate slope. The Luanshibao landslide, which is a typical landslide in the study area, had notable signs of displacement, where the displacement rate along the back edge of the landslide can reach 20 mm/a. An inversion method for the seasonal frozen soil area distribution was proposed based on the periodic subsidence and uplift model and time-series monitoring data; the calculated seasonal freeze–thaw amplitude exceeded 20 mm. Further analysis revealed a 2-month lag in the response of the freeze–thaw phenomenon to the air temperature. This study demonstrated that DS-InSAR offers optimal surface displacement data, which can provide an important basis to identify engineering geological hazards. Full article
(This article belongs to the Special Issue Monitoring Geohazard from Synthetic Aperture Radar Interferometry)
Show Figures

Figure 1

21 pages, 29314 KB  
Article
Integration of Terrestrial Laser Scanner (TLS) and Ground Penetrating Radar (GPR) to Characterize the Three-Dimensional (3D) Geometry of the Maoyaba Segment of the Litang Fault, Southeastern Tibetan Plateau
by Di Zhang, Zhonghai Wu, Danni Shi, Jiacun Li and Yan Lu
Remote Sens. 2022, 14(24), 6394; https://doi.org/10.3390/rs14246394 - 18 Dec 2022
Cited by 9 | Viewed by 3519
Abstract
High-resolution topographic and stratigraphic datasets have been increasing applied in active fault investigation and seismic hazard assessment. There is a need for the comprehensive analysis of active faults on the basis of the correlating geomorphologic features and stratigraphic data. The integration of TLS [...] Read more.
High-resolution topographic and stratigraphic datasets have been increasing applied in active fault investigation and seismic hazard assessment. There is a need for the comprehensive analysis of active faults on the basis of the correlating geomorphologic features and stratigraphic data. The integration of TLS and GPR was adopted to characterize the 3D geometry of the fault on the Maoyaba segment of Litang fault. The TLS was used to obtain the high-resolution topographic data for establishing the 3D surficial model of the fault. The 2D 250 MHz and 500 MHz GPR profiles were carried out to image the shallow geometry of the fault along four survey lines. In addition, the 3D GPR survey was performed by ten 2D 500 MHz GPR profiles with 1 m spacing. From the 2D and 3D GPR results, a wedge-shaped deformation zone of the electromagnetic wave was clearly found on the GPR profiles, and it was considered to be the main fault zone with a small graben structure. Three faults were identified on the main fault zone, and fault F1 and F3 were the boundary faults, while the fault F2 was the secondary fault. The subsurface geometry of the fault on the GPR interpreted results is consistent with the geomorphologic features of the TLS-derived data, and it indicates that the Maoyaba fault is a typical, normal fault. For reducing the environmental disruption and economic losses, GPR was the most optimal method for detecting the subsurface structures of active faults in the Litang fault with a non-destructive and cost-effective fashion. The 3D surface and subsurface geometry of the fault was interpreted from the integrated data of TLS and GPR. The fusion data also offers the chance for the subsurface structures of active faults on the GPR profiles to be better understood with its corresponding superficial features. The study results demonstrate that the integration of TLS and GPR has the capability to obtain the high-resolution micro geomorphology and shallow geometry of active faults on the Maoyaba segment of the Litang fault, and it also provides a future prospect for the integration of TLS and GPR, and is valuable for active fault investigation and seismic hazard assessment, especially in the Qinghai-Tibet Plateau area. Full article
(This article belongs to the Special Issue Remote Sensing in Earthquake, Tectonics and Seismic Hazards)
Show Figures

Figure 1

32 pages, 41071 KB  
Article
Hydrogeochemical and Isotopic Characteristics of the Hot Springs in the Litang Fault Zone, Southeast Qinghai–Tibet Plateau
by Rui Zhou, Xiaocheng Zhou, Ying Li, Miao He, Jingchao Li, Jinyuan Dong, Jiao Tian, Kaiyue Li, Yucong Yan, Shupei Ouyang, Fengli Liu and Zhixin Luo
Water 2022, 14(9), 1496; https://doi.org/10.3390/w14091496 - 6 May 2022
Cited by 26 | Viewed by 5572
Abstract
Based on the observation of the geochemical characteristics of 19 hot springs in the Litang Fault Zone (LFZ) from 2010 to 2019, the major elements, trace elements, and stable isotopes were investigated, and a conceptual model of ground fluid circulation in the LFZ [...] Read more.
Based on the observation of the geochemical characteristics of 19 hot springs in the Litang Fault Zone (LFZ) from 2010 to 2019, the major elements, trace elements, and stable isotopes were investigated, and a conceptual model of ground fluid circulation in the LFZ was established. The main hydrochemical type of hot spring water samples is HCO3-Na+. The δ2H values range from −157.6‰ to −123.4‰ and δ18O values range from −24.5‰ to −15.4‰. The hot spring water in the Litang fault zone is mainly recharged by infiltrating precipitation, with a recharge elevation of 4062~6018 m. Hydrochemical types of Litang hot springs are mainly controlled by the circulation of groundwater in a deep fault system, and are related to the rock lithology of thermal reservoir and water–rock reaction areas. Hot springs in the Litang fault zone attribute to three different heat sources, belonging to three geothermal systems. The flow direction of groundwater in the LFZ is roughly from northwest to southeast along the Litang fault. The deeper the circulation depth of hot spring water on the fault, the higher the thermal reservoir temperature and the stronger the seismic activity of the segment, which is closely related to the increase in pore fluid pressure, rock weakening, and deep fluid upwelling. This study is helpful for further study on regional hydrogeological environments and provides a scientific basis for revealing geothermal fluid movement in fault zones. Full article
(This article belongs to the Special Issue Earthquakes and Groundwater)
Show Figures

Figure 1

Back to TopTop