Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = terrain niche index (TNI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6684 KiB  
Article
Modelling the Dynamics of Carbon Storages for Pinus densata Using Landsat Images in Shangri-La Considering Topographic Factors
by Yi Liao, Jialong Zhang, Rui Bao, Dongfan Xu and Dongyang Han
Remote Sens. 2022, 14(24), 6244; https://doi.org/10.3390/rs14246244 - 9 Dec 2022
Cited by 11 | Viewed by 2245
Abstract
Accurate estimation of forest carbon storage is essential for understanding the dynamics of forest resources and optimizing decisions for forest resource management. In order to explore the changes in the carbon storage of Pinus densata in Shangri-La and the influence of topography on [...] Read more.
Accurate estimation of forest carbon storage is essential for understanding the dynamics of forest resources and optimizing decisions for forest resource management. In order to explore the changes in the carbon storage of Pinus densata in Shangri-La and the influence of topography on carbon storage, two dynamic models were developed based on the National Forest Inventory (NFI) and Landsat TM/OLI images with a 5-year interval change and annual average change. The three modelling methods used were partial least squares (PLSR), random forest (RF) and gradient boosting regression tree (GBRT). Various spectral and texture features of the images were calculated and filtered before modelling. The terrain niche index (TNI), which is able to reflect the combined effect of elevation and slope, was added to the dynamic model, the optimal model was selected to estimate the carbon storage, and the topographic conditions in areas of change in carbon storage were analyzed. The results showed that: (1) The dynamic model based on 5-year interval change data performs better than the dynamic model with annual average change data, and the RF model has a higher accuracy compared to the PLSR and GBRT models. (2) The addition of TNI improved the accuracy, in which R2 is improved by up to 10.48% at most, RMSE is reduced by up to 7.32% at most, and MAE is reduced by up to 8.89% at most, and the RF model based on the 5-year interval change data has the highest accuracy after adding TNI, with an R2 of 0.87, an RMSE of 3.82 t-C·ha−1, and a MAE of 1.78 t-C·ha−1. (3) The direct estimation results of the dynamic model showed that the carbon storage of Pinus densata in Shangri-La decreased in 1987–1992 and 1997–2002, and increased in 1992–1997, 2002–2007, 2007–2012, and 2012–2017. (4) The trend of increasing or decreasing carbon storage in each period is not exactly the same on the TNI gradient, according to the dominant distribution, as topographic conditions with lower elevations or gentler slopes are favorable for the accumulation of carbon storage, while the decreasing area of carbon storage is more randomly distributed topographically. This study develops a dynamic estimation model of carbon storage considering topographic factors, which provides a solution for the accurate estimation of forest carbon storage in regions with a complex topography. Full article
(This article belongs to the Special Issue Monitoring Forest Carbon Sequestration with Remote Sensing)
Show Figures

Figure 1

17 pages, 3690 KiB  
Article
Assessing Future Vegetation Trends and Restoration Prospects in the Karst Regions of Southwest China
by Xiaowei Tong, Kelin Wang, Martin Brandt, Yuemin Yue, Chujie Liao and Rasmus Fensholt
Remote Sens. 2016, 8(5), 357; https://doi.org/10.3390/rs8050357 - 27 Apr 2016
Cited by 144 | Viewed by 9430
Abstract
To alleviate the severe rocky desertification and improve the ecological conditions in Southwest China, the national and local Chinese governments have implemented a series of Ecological Restoration Projects since the late 1990s. In this context, remote sensing can be a valuable tool for [...] Read more.
To alleviate the severe rocky desertification and improve the ecological conditions in Southwest China, the national and local Chinese governments have implemented a series of Ecological Restoration Projects since the late 1990s. In this context, remote sensing can be a valuable tool for conservation management by monitoring vegetation dynamics, projecting the persistence of vegetation trends and identifying areas of interest for upcoming restoration measures. In this study, we use MODIS satellite time series (2001–2013) and the Hurst exponent to classify the study area (Guizhou and Guangxi Provinces) according to the persistence of future vegetation trends (positive, anti-persistent positive, negative, anti-persistent negative, stable or uncertain). The persistence of trends is interrelated with terrain conditions (elevation and slope angle) and results in an index providing information on the restoration prospects and associated uncertainty of different terrain classes found in the study area. The results show that 69% of the observed trends are persistent beyond 2013, with 57% being stable, 10% positive, 5% anti-persistent positive, 3% negative, 1% anti-persistent negative and 24% uncertain. Most negative development is found in areas of high anthropogenic influence (low elevation and slope), as compared to areas of rough terrain. We further show that the uncertainty increases with the elevation and slope angle, and areas characterized by both high elevation and slope angle need special attention to prevent degradation. Whereas areas with a low elevation and slope angle appear to be less susceptible and relevant for restoration efforts (also having a high uncertainty), we identify large areas of medium elevation and slope where positive future trends are likely to happen if adequate measures are utilized. The proposed framework of this analysis has been proven to work well for assessing restoration prospects in the study area, and due to the generic design, the method is expected to be applicable for other areas of complex landscapes in the world to explore future trends of vegetation. Full article
(This article belongs to the Special Issue Remote Sensing of Land Degradation and Drivers of Change)
Show Figures

Graphical abstract

Back to TopTop