Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = tapered air-gap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11401 KB  
Article
In Vitro Comparison of Monolithic Zirconia Crowns: Marginal/Internal Adaptation and 3D-Quantified Preparation Defects Using Air-Driven, Electric-Driven, and Piezoelectric Ultrasonic Handpieces
by Rand Saman Jadid and Abdulsalam Rasheed Al-Zahawi
Prosthesis 2025, 7(4), 75; https://doi.org/10.3390/prosthesis7040075 - 1 Jul 2025
Cited by 1 | Viewed by 2377
Abstract
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were [...] Read more.
Purpose: The aim of this study was to compare the effect of rotary (air-driven, electric-driven) and oscillating (piezoelectric ultrasonic) handpieces on the quality of crown preparation, marginal integrity, and internal adaptation of monolithic zirconia crowns. Materials and Methods: Seventy-two standardized premolar preparations were performed using the air-driven handpiece with a guide pin-ended tapered fissure diamond bur on a modified dental surveyor. The finishing process utilized three handpiece types (n = 24/group) with fine/superfine diamond burs under controlled force with a fixed number of rotations and controlled advancement time. Marginal/internal adaptation was evaluated via the triple-scan technique; defects (marginal, axial, and occlusal) were quantified based on predefined criteria through the inspection of the Standard Tessellation Language (STL) file. Results: One-way ANOVA with Tukey HSD and Kruskal–Wallis with Dunn–Bonferroni tests were utilized. The marginal gap showed no significant differences (p > 0.05, η2 = 0.04). The electric handpiece outperformed the ultrasonic (p = 0.023, η2 = 0.105) in internal adaptation, while the air-driven showed no differences (p > 0.05). The ultrasonic handpiece produced fewer marginal defects than the air-driven (p = 0.039, ε2 = 0.132), but more axial defects (median 9 vs. 6, p = 0.014, ε2 = 0.168) than the electric handpiece and occlusal defects (5 vs. 3, 4 p = 0.007, p = 0.015, ε2 = 0.227) than rotary handpieces. The air-driven handpiece exhibited comparable defect numbers to the electric handpiece without statistical significance (p > 0.05). Conclusions: Handpiece selection had a small effect on marginal adaptation but more pronounced effects on overall defect formations and internal adaptation. The ultrasonic handpiece’s decreased marginal defects but variable axial/occlusal results reveal technological constraints, whereas rotary handpieces’ consistency reflects their operator-dependent nature. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Graphical abstract

23 pages, 2616 KB  
Article
Investigation of Harmonic Losses to Reduce Rotor Copper Loss in Induction Motors for Traction Applications
by Muhammad Salik Siddique, Hulusi Bülent Ertan, Muhammad Shahab Alam and Muhammad Umer Khan
World Electr. Veh. J. 2025, 16(5), 248; https://doi.org/10.3390/wevj16050248 - 25 Apr 2025
Cited by 1 | Viewed by 1988
Abstract
The focus of this paper is to seek means of increasing induction motor efficiency to a comparable level to a permanent magnet motor. Harmonic and high-frequency losses increase the rotor core and copper loss, often limiting IM efficiency. The research in this study [...] Read more.
The focus of this paper is to seek means of increasing induction motor efficiency to a comparable level to a permanent magnet motor. Harmonic and high-frequency losses increase the rotor core and copper loss, often limiting IM efficiency. The research in this study focuses on reducing rotor core and copper losses for this purpose. An accurate finite element model of a prototype motor is developed. The accuracy of this model in predicting the performance and losses of the prototype motor is verified with experiments over a 32 Hz–125 Hz supply frequency range. The verified model of the motor is used to identify the causes of the rotor core and copper losses of the motor. It is found that the air gap flux density of the motor contains many harmonics, and the slot harmonics are dominant. The distribution of the core loss and the copper loss is investigated on the rotor side. It is discovered that up to 35% of the rotor copper losses and 90% rotor core losses occur in the regions up to 4 mm from the airgap where the harmonics penetrate. To reduce these losses, one solution is to reduce the magnitude of the air gap flux density harmonics. For this purpose, placing a sleeve to cover the slot openings is investigated. The FEA indicates that this measure reduces the harmonic magnitudes and reduces the core and bar losses. However, its effect on efficiency is observed to be limited. This is attributed to the penetration depth of flux density harmonics inside the rotor conductors. To remedy this problem, several FEA-based modifications to the rotor slot shape are investigated to place rotor bars deeper than the harmonic penetration. It is found that placing the bars further away from the rotor surface is very effective. Using a 1 mm sleeve across the stator’s open slots combined with a rotor tapered slot lip positions the bars slightly deeper than the major harmonic penetration depth, making it the optimal solution. This reduces the bar loss by 70% and increases the motor efficiency by 1%. Similar loss reduction is observed over the tested supply frequency range. Full article
(This article belongs to the Special Issue Propulsion Systems of EVs 2.0)
Show Figures

Figure 1

15 pages, 7886 KB  
Article
Optimal Rotor Design for Reducing Electromagnetic Vibration in Traction Motors Based on Numerical Analysis
by Seung-Heon Lee, Si-Woo Song, In-Jun Yang, Ju Lee and Won-Ho Kim
Energies 2024, 17(23), 6206; https://doi.org/10.3390/en17236206 - 9 Dec 2024
Cited by 1 | Viewed by 1317
Abstract
Interior permanent magnet synchronous motor (IPMSM) for traction applications have attracted significant attention due to their advantages of high torque and power density as well as a wide operating range. However, these motors suffer from high electromagnetic vibration noise due to their complex [...] Read more.
Interior permanent magnet synchronous motor (IPMSM) for traction applications have attracted significant attention due to their advantages of high torque and power density as well as a wide operating range. However, these motors suffer from high electromagnetic vibration noise due to their complex structure and structural rigidity. The main sources of this electromagnetic vibration noise are cogging torque, torque ripple, and radial force. To predict electromagnetic vibration noise, finite element analysis (FEA) with flux density analysis of the air gap is essential. This approach allows for the calculation of radial force that is the source of the vibration and enables the prediction of vibration in advance. The data obtained from these analyses provide important guidance for reducing vibration and noise in the design of electric motors. In this paper, the cogging torque and vibration at rated and maximum operating speed are analyzed, and an optimal cogging torque and vibration reduction model, with rotor taper and two-step skew structure, is proposed using the response surface method (RSM) to minimize them. The validity of the proposed model is demonstrated through formulations and FEA based entirely on numerical analysis and results. This study is expected to contribute to the design of more efficient and quieter electric motors by providing a solution to the electromagnetic vibration noise problem generated by IPMSM for traction applications with complex structures. Full article
Show Figures

Figure 1

17 pages, 19201 KB  
Article
Study of the Static Characteristics of Gas-Lubricated Thrust Bearings Using Analytical and Finite Element Methods
by Ke Zhang, Xiaojiao Zhang and Ruiyu Zhang
Appl. Sci. 2024, 14(8), 3459; https://doi.org/10.3390/app14083459 - 19 Apr 2024
Cited by 3 | Viewed by 1638
Abstract
A study was conducted to develop a porous aerostatic rectangular thrust bearing model, with the aim of assessing how different operational conditions and geometric factors influence its static capabilities. Initially, the Reynolds equation was analytically solved. Subsequently, simulations were performed on the rectangular [...] Read more.
A study was conducted to develop a porous aerostatic rectangular thrust bearing model, with the aim of assessing how different operational conditions and geometric factors influence its static capabilities. Initially, the Reynolds equation was analytically solved. Subsequently, simulations were performed on the rectangular air bearing model. Analyzing the impact of throttle hole configurations, air film thickness, orifice size, and supply pressure revealed their significant effect on the bearing’s load capacity, air consumption, peak airflow speed in the air film gap, and rigidity. Experimental validations were further conducted on manufactured bearings, corroborating the theoretical findings. It was observed that extending the length of the rectangular throttle hole array progressively increases gas consumption and diminishes stability, while the load capacity and stiffness initially surge then taper off. A thinner air film enhances load capacity and reduces gas flow, contributing to increased stability. Conversely, enlarging the orifice diameter boosts both load capacity and stability but escalates mass flow and diminishes stiffness. Elevating gas supply pressure enhances load capacity, flow rate, and stiffness, albeit at the cost of reduced stability. A comparative analysis among experimental data, finite element analysis, and analytical solutions showed strong congruence, affirming the precision of the latter two methods for predicting the bearing’s performance. This investigation aids with refining bearing design for precision devices and offers insights to enhance bearing efficiency and lifespan and to reduce friction and wear. Given its lower computational demands, the analytical approach provides a rapid means to assess static characteristics, underscoring its utility alongside finite element techniques for optimizing aerostatic bearing parameters. Full article
Show Figures

Figure 1

17 pages, 4848 KB  
Article
Alternative Surface-Mounted Permanent Magnet Topology for Reducing Voltage and Torque Harmonics in Shaft Generators
by Rak-Won Son and Ju Lee
Energies 2023, 16(12), 4649; https://doi.org/10.3390/en16124649 - 12 Jun 2023
Cited by 2 | Viewed by 2492
Abstract
Traditional diesel generators on a merchant ship, composed of a wound rotor synchronous generator and a four-stroke diesel engine, supply electrical power for various loads. Recently, shaft generators for merchant ships have been increasingly replacing diesel generators to reduce CO2 emissions through [...] Read more.
Traditional diesel generators on a merchant ship, composed of a wound rotor synchronous generator and a four-stroke diesel engine, supply electrical power for various loads. Recently, shaft generators for merchant ships have been increasingly replacing diesel generators to reduce CO2 emissions through fuel efficiency improvement. In particular, permanent magnet synchronous generators have replaced induction generators due to their high-efficiency characteristics at light loads. The surface-mounted permanent magnet rotor can be a suitable topology owing to the relatively short constant power range. This generator can also operate as a motor according to the propulsion mode, so minimizing the harmonics of the induced voltage with the torque pulsation being essential. This paper proposes an alternative surface permanent magnet topology. Three magnets comprise one pole, with one bread-loaf magnet and two rectangular magnets. It helps to simplify the magnetization and assembly of the rotor because of the flat bottom shape of the magnet. Due to the low remanence of two rectangular magnets at the pole edge, this rotor structure effectively makes the air-gap magnetic flux density sinusoidal with production costs reduced. The step-skew suppresses higher-order harmonics. The total harmonic distortion comparison of the two-dimensional finite element analysis and the no-load test result shows under 6% difference from the interior permanent magnet prototype machine. A comparison of harmonic characteristics with other rotors shows that the proposed modular pole has sufficient competitiveness compared to the tapered bread-loaf type. It can be applied as a substitute for the tapered bread-loaf magnet in direct-drive ship propulsion systems and is expected to shorten the manufacturing process and time. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

10 pages, 1819 KB  
Article
Finned Tubular Air Gap Membrane Distillation
by Zhiqiang Wu and Fei Guo
Membranes 2023, 13(5), 498; https://doi.org/10.3390/membranes13050498 - 8 May 2023
Cited by 6 | Viewed by 2294
Abstract
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE [...] Read more.
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE membrane and finned tubes were constructed in this work, and three representative air gap structures, including tapered finned tube, flat finned tube, and expanded finned tube, were designed. Membrane distillation experiments were carried out in the form of water cooling and air cooling, and the influences of air gap structures, temperature, concentration, and flow rate on the transmembrane flux were analyzed. The good water-treatment ability of the finned tubular air gap membrane distillation model and the applicability of air cooling for the finned tubular air gap membrane distillation structure were verified. The membrane distillation test results show that with the tapered finned tubular air gap structure, the finned tubular air gap membrane distillation has the best performance. The maximum transmembrane flux of the finned tubular air gap membrane distillation could reach 16.3 kg/m2/h. Strengthening the convection heat transfer between air and fin tube could increase the transmembrane flux and improve the efficiency coefficient. The efficiency coefficient (σ) could reach 0.19 under the condition of air cooling. Compared with the conventional air gap membrane distillation configuration, air cooling configuration for air gap membrane distillation is an effective way to simplify the system design and offers a potential way for the practical applications of membrane distillation on an industrial scale. Full article
(This article belongs to the Special Issue Advances in Membrane Distillation)
Show Figures

Figure 1

15 pages, 3027 KB  
Article
Optimal Design of Step-Sloping Notches for Cogging Torque Minimization of Single-Phase BLDC Motors
by Yong-woon Park, Jae-sub Ko and Dae-kyong Kim
Energies 2021, 14(21), 7104; https://doi.org/10.3390/en14217104 - 1 Nov 2021
Cited by 6 | Viewed by 2778
Abstract
This paper presents a method for reducing the cogging torque for a sloping notch with two notches applied on the stator teeth. The accuracy of FEA was confirmed by a comparison with a previous model using an asymmetric notch for the experiment data [...] Read more.
This paper presents a method for reducing the cogging torque for a sloping notch with two notches applied on the stator teeth. The accuracy of FEA was confirmed by a comparison with a previous model using an asymmetric notch for the experiment data and 3D FEA results, followed by a comparison of the cogging torque of a two notches model and a sloping notch model. The sloping notch model was modified to a step-sloping notch model in consideration of a potential manufacturing process. The optimal design for minimizing the cogging torque was developed considering the sloping degree, angle, position, and size of the notches. As the optimal design result, the cogging torque on the optimal model was reduced. Finally, the analysis and optimal design results were confirmed by FEA. Full article
(This article belongs to the Special Issue Advanced Techniques for High-Performance Permanent Magnet Motors)
Show Figures

Figure 1

9 pages, 1812 KB  
Article
Influence of Silane Pretreatment and Warm Air-Drying on Long-Term Composite Adaptation to Lithium Disilicate Ceramic
by Pa Pa Kay Khine, Antonin Tichy, Ahmed Abdou, Keiichi Hosaka, Yasunori Sumi, Junji Tagami and Masatoshi Nakajima
Crystals 2021, 11(2), 86; https://doi.org/10.3390/cryst11020086 - 21 Jan 2021
Cited by 2 | Viewed by 3055
Abstract
Background: Repair bonding to lithium disilicate ceramic (LDS) remains an issue. This study examined whether the adaptation of a resin composite to LDS can be improved by a silane pretreatment and warm air-drying. Methods: LDS blocks (IPS e.max CAD) with prefabricated tapered cavities [...] Read more.
Background: Repair bonding to lithium disilicate ceramic (LDS) remains an issue. This study examined whether the adaptation of a resin composite to LDS can be improved by a silane pretreatment and warm air-drying. Methods: LDS blocks (IPS e.max CAD) with prefabricated tapered cavities were bonded using a silane-containing universal adhesive (Clearfil Universal Bond Quick ER; UBQ) or the bonding agent of a two-step self-etch adhesive (Clearfil SE Bond 2), with and without a silane pretreatment (Clearfil Ceramic Primer; CP). CP and the adhesives were air-dried with normal air (23 ± 1 °C) or warm air (60 ± 5 °C), light-cured, and the cavities were filled with a flowable composite. Interfacial gap formation was evaluated using swept-source optical coherence tomography immediately after filling, after 24 h, 5000 and 10,000 thermal cycles, and an additional 1 year of water storage. Results: Without the silane pretreatment, all specimens soon detached from the cavities. Warm air-drying significantly decreased gap formation compared to normal air-dried groups (p < 0.001) and improved long-term stability (p < 0.001). The lowest gap formation was observed with UBQ when the silane pretreatment was combined with warm air-drying. Conclusions: Composite adaptation to LDS was insufficient without silanization, but it was stable in the long term if the silane pretreatment and warm air-drying were combined. Full article
(This article belongs to the Special Issue Resin Ceramics Composite)
Show Figures

Figure 1

20 pages, 7571 KB  
Article
A Micro-Coordinate Measurement Machine (CMM) for Large-Scale Dimensional Measurement of Micro-Slits
by So Ito, Hirotaka Kikuchi, Yuanliu Chen, Yuki Shimizu, Wei Gao, Kazuhiko Takahashi, Toshihiko Kanayama, Kunmei Arakawa and Atsushi Hayashi
Appl. Sci. 2016, 6(5), 156; https://doi.org/10.3390/app6050156 - 18 May 2016
Cited by 19 | Viewed by 8388
Abstract
This paper presents a micro-coordinate measuring machine (micro-CMM) for large-scale dimensional measurement of a micro-slit on a precision die coater by using a shear-mode micro-probe. A glass micro sphere with a nominal diameter of 52.3 μm was attached on one end of a [...] Read more.
This paper presents a micro-coordinate measuring machine (micro-CMM) for large-scale dimensional measurement of a micro-slit on a precision die coater by using a shear-mode micro-probe. A glass micro sphere with a nominal diameter of 52.3 μm was attached on one end of a tapered glass capillary tube as a probe tip ball. The micro-slit width of a slot die coater with a nominal slit width of 85 μm was measured by the micro-CMM. The probe tip was placed in the slit for the measurement. The effective working length of the probe was confirmed experimentally to be at least 1 mm. In order to measure the gap width uniformity over the entire slot die length of 200 mm, an air-bearing linear slide with a travelling stroke of 300 mm was employed in the micro-CMM to position the probe along the length direction of the slot die. The angular alignment error and the motion error of the air-bearing linear slide as well as those of the stages for positioning the probe along the direction perpendicular to the length direction of the slot die were investigated for evaluation of the expanded uncertainty of gap width measurement. Full article
(This article belongs to the Special Issue Design and Applications of Coordinate Measuring Machines)
Show Figures

Figure 1

Back to TopTop