Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = synthetic aperture magnetometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11681 KiB  
Conference Report
Sensing Archaeology in the North: The Use of Non-Destructive Geophysical and Remote Sensing Methods in Archaeology in Scandinavian and North Atlantic Territories
by Carmen Cuenca-García, Ole Risbøl, C. Richard Bates, Arne Anderson Stamnes, Fredrik Skoglund, Øyvind Ødegård, Andreas Viberg, Satu Koivisto, Mikkel Fuglsang, Manuel Gabler, Esben Schlosser Mauritsen, Wesa Perttola and Dag-Øyvind Solem
Remote Sens. 2020, 12(18), 3102; https://doi.org/10.3390/rs12183102 - 22 Sep 2020
Cited by 18 | Viewed by 8417
Abstract
In August 2018, a group of experts working with terrestrial/marine geophysics and remote sensing methods to explore archaeological sites in Denmark, Finland, Norway, Scotland and Sweden gathered together for the first time at the Workshop ‘Sensing Archaeology in The North’. The goal was [...] Read more.
In August 2018, a group of experts working with terrestrial/marine geophysics and remote sensing methods to explore archaeological sites in Denmark, Finland, Norway, Scotland and Sweden gathered together for the first time at the Workshop ‘Sensing Archaeology in The North’. The goal was to exchange experiences, discuss challenges, and consider future directions for further developing these methods and strategies for their use in archaeology. After the event, this special journal issue was arranged to publish papers that are based on the workshop presentations, but also to incorporate work that is produced by other researchers in the field. This paper closes the special issue and further aims to provide current state-of-the-art for the methods represented by the workshop. Here, we introduce the aspects that inspired the organisation of the meeting, a summary of the 12 presentations and eight paper contributions, as well as a discussion about the main outcomes of the workshop roundtables, including the production of two searchable databases (online resources and equipment). We conclude with the position that the ‘North’, together with its unique cultural heritage and thriving research community, is at the forefront of good practice in the application and development of sensing methods in archaeological research and management. However, further method development is required, so we claim the support of funding bodies to back research efforts based on testing/experimental studies to: explore unknown survey environments and identify optimal survey conditions, as well as to monitor the preservation of archaeological remains, especially those that are at risk. It is demonstrated that remote sensing and geophysics not only have an important role in the safeguarding of archaeological sites from development and within prehistorical-historical research, but the methods can be especially useful in recording and monitoring the increased impact of climate change on sites in the North. Full article
Show Figures

Figure 1

22 pages, 3801 KiB  
Review
Magnetoencephalography: Clinical and Research Practices
by Jennifer R. Stapleton-Kotloski, Robert J. Kotloski, Gautam Popli and Dwayne W. Godwin
Brain Sci. 2018, 8(8), 157; https://doi.org/10.3390/brainsci8080157 - 17 Aug 2018
Cited by 17 | Viewed by 6648
Abstract
Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, [...] Read more.
Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, which provide information that is similar to invasive electrode recordings. This innovative approach has demonstrated utility in both clinical and research settings. For individuals with epilepsy, MEG provides valuable, nonredundant information. MEG accurately localizes the irritative zone associated with interictal spikes, often detecting epileptiform activity other methods cannot, and may give localizing information when other methods fail. These capabilities potentially greatly increase the population eligible for epilepsy surgery and improve planning for those undergoing surgery. MEG methods can be readily adapted to research settings, allowing noninvasive assessment of whole brain neurophysiological activity, with a theoretical spatial range down to submillimeter voxels, and in both humans and nonhuman primates. The combination of clinical and research activities with MEG offers a unique opportunity to advance translational research from bench to bedside and back. Full article
Show Figures

Figure 1

Back to TopTop