Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = synchrotron X-ray fluorescence microscopy (µXRF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9371 KB  
Article
Intestinal Effects of Brewers’ Spent Grain Extract In Ovo (Gallus gallus)—A Pilot Study
by Melissa Y. Huang, Louisa M. Smieska and Elad Tako
Animals 2025, 15(3), 303; https://doi.org/10.3390/ani15030303 - 22 Jan 2025
Cited by 1 | Viewed by 2363
Abstract
Upcycling brewers’ spent grain (BSG) into poultry feed needs to be optimized. Since broiler chickens inefficiently digest fiber, we created a water-soluble BSG extract (BSGE) to explore this fraction’s potential nutritional benefits. We utilized intra-amniotic administration (in ovo) to target the gastrointestinal tract [...] Read more.
Upcycling brewers’ spent grain (BSG) into poultry feed needs to be optimized. Since broiler chickens inefficiently digest fiber, we created a water-soluble BSG extract (BSGE) to explore this fraction’s potential nutritional benefits. We utilized intra-amniotic administration (in ovo) to target the gastrointestinal tract of broiler embryos. BSGE increased villus surface area and goblet cell quantity and size, implying improved duodenal development. The extract also changed cecal Escherichia coli (E. coli) and Clostridium abundances. Synchrotron X-ray fluorescence microscopy, along with zinc and iron transporter relative expression, did not reveal significant changes by BSGE. These findings highlight the potential for BSGE to be a functional feed component, underscoring the potential value of upcycling this byproduct. This pilot study supports future work exploring the impact of BSGE within feed and its effects over long-term consumption. Full article
Show Figures

Graphical abstract

17 pages, 2139 KB  
Article
Synchrotron Radiation Spectroscopy and Transmission Electron Microscopy Techniques to Evaluate TiO2 NPs Incorporation, Speciation, and Impact on Root Cells Ultrastructure of Pisum sativum L. Plants
by Simonetta Muccifora, Hiram Castillo-Michel, Francesco Barbieri, Lorenza Bellani, Monica Ruffini Castiglione, Carmelina Spanò, Ana E. Pradas del Real, Lucia Giorgetti and Eliana L. Tassi
Nanomaterials 2021, 11(4), 921; https://doi.org/10.3390/nano11040921 - 4 Apr 2021
Cited by 18 | Viewed by 3878
Abstract
Biosolids (Bs) for use in agriculture are an important way for introducing and transferring TiO2 nanoparticles (NPs) to plants and food chain. Roots of Pisum sativum L. plants grown in Bs-amended soils spiked with TiO2 800 mg/kg as rutile NPs, anatase [...] Read more.
Biosolids (Bs) for use in agriculture are an important way for introducing and transferring TiO2 nanoparticles (NPs) to plants and food chain. Roots of Pisum sativum L. plants grown in Bs-amended soils spiked with TiO2 800 mg/kg as rutile NPs, anatase NPs, mixture of both NPs and submicron particles (SMPs) were investigated by Transmission Electron Microscopy (TEM), synchrotron radiation based micro X-ray Fluorescence and micro X-ray Absorption Near-Edge Structure (µXRF/µXANES) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). TEM analysis showed damages in cells ultrastructure of all treated samples, although a more evident effect was observed with single anatase or rutile NPs treatments. Micro-XRF and TEM evidenced the presence of nano and SMPs mainly in the cortex cells near the rhizodermis. Micro-XRF/micro-XANES analysis revealed anatase, rutile, and ilmenite as the main TiO2 polymorphs in the original soil and Bs, and the preferential anatase uptake by the roots. For all treatments Ti concentration in the roots increased by 38–56%, however plants translocation factor (TF) increased mostly with NPs treatment (261–315%) and less with SMPs (about 85%), with respect to control. In addition, all samples showed a limited transfer of TiO2 to the shoots (very low TF value). These findings evidenced a potential toxicity of TiO2 NPs present in Bs and accumulating in soil, suggesting the necessity of appropriate regulations for the occurrence of NPs in Bs used in agriculture. Full article
(This article belongs to the Special Issue Ecotoxicity of Titanium Dioxide Nanoparticles)
Show Figures

Graphical abstract

Back to TopTop