Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = swing narrow gap MAG welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8212 KiB  
Article
The Different Welding Layers and Heat Source Energy on Residual Stresses in Swing Arc Narrow Gap MAG Welding
by Yuan Fang, Chunwei Ma, Guangkai Zhang, Yuli Qin and Wentao Cao
Materials 2023, 16(11), 4067; https://doi.org/10.3390/ma16114067 - 30 May 2023
Cited by 1 | Viewed by 1804
Abstract
In this paper, in order to reduce the time cost of prediction experiments in industry, a new narrow gap oscillation calculation method is developed in ABAQUS thermomechanical coupling analysis to study the distribution trend of residual weld stresses in comparison with conventional multi-layer [...] Read more.
In this paper, in order to reduce the time cost of prediction experiments in industry, a new narrow gap oscillation calculation method is developed in ABAQUS thermomechanical coupling analysis to study the distribution trend of residual weld stresses in comparison with conventional multi-layer welding processes. The blind hole detection technique and thermocouple measurement method verify the reliability of the prediction experiment. The results show that the experimental and simulation results have a high degree of agreement. In the prediction experiments, the calculation time of the high-energy single-layer welding experiments is 1/4 of the traditional multi-layer welding. Two welding processes of longitudinal residual stress and transverse residual stress distribution trends are the same. The high-energy single-layer welding experiment stress distribution range and transverse residual stress peak are smaller, but the longitudinal residual stress peak is slightly higher, which can be effectively reduced by increasing the preheating temperature of the welded parts. This implies that in the specific case of increasing the initial temperature of the workpiece, the use of high-energy single-layer welding instead of multi-layer welding to study the residual stress distribution trend not only optimizes the weld quality but also reduces the time cost to a large extent. Full article
Show Figures

Figure 1

12 pages, 5240 KiB  
Article
Effect of 580 °C (20 h) Heat Treatment on Mechanical Properties of 25Cr2NiMo1V Rotor-Welded Joints of Oscillating Arc (MAG) Narrow Gap Thick Steel
by Xiaoyan Qian, Xin Ye, Xiaoqi Hou, Fuxin Wang, Shaowei Li, Zhishui Yu, Shanglei Yang, Chen Huang, Jinpeng Cui and Chunxiang Zhu
Materials 2021, 14(16), 4498; https://doi.org/10.3390/ma14164498 - 11 Aug 2021
Cited by 4 | Viewed by 1915
Abstract
The thick plate narrow gap welding of 25Cr2NiMo1V rotor steel is achieved by metal active gas arc welding, in which the weld gap was 18.04–19.9 mm. After welding, the weldment was heat treated at 580 °C (20 h). The impact and tensile properties [...] Read more.
The thick plate narrow gap welding of 25Cr2NiMo1V rotor steel is achieved by metal active gas arc welding, in which the weld gap was 18.04–19.9 mm. After welding, the weldment was heat treated at 580 °C (20 h). The impact and tensile properties in the as-welded and heat-treated were studied. The results show that after heat treatment, the coarse carbides in the center of the weld were transformed into fine granular carbides distributed along the grain boundaries, and the quantity of carbide precipitates in the weld near the fusion line was reduced. The tensile fracture mode changed from a ductile fracture to a combination of brittle and ductile fractures, and the tensile strength of the weld metal changed from 605 MPa to 543 MPa. After heat-treated, the radiation zone of the weld center changed from a brittle fracture to a combination of brittle and ductile fractures, and the impact energy changed from 141 J to 183 J; the characteristics of the brittle fracture in the radial zone of the fusion line were more obvious, and the impact energy changed from 113 J to 95 J. Therefore, after heat treatment, the toughness of the welded metal was improved, without reducing the strength and hardness of the welded metal to a large extent. Full article
Show Figures

Figure 1

Back to TopTop