Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = superspin relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1991 KiB  
Article
Chemical Manipulation of the Collective Superspin Dynamics in Heat-Generating Superparamagnetic Fluids: An AC-Susceptibility Study
by Cristian E. Botez and Alex D. Price
Crystals 2025, 15(7), 631; https://doi.org/10.3390/cryst15070631 - 9 Jul 2025
Viewed by 210
Abstract
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major [...] Read more.
We use Co doping to alter the magnetic relaxation dynamics in superparamagnetic nanofluids made of 18 nm average diameter Fe3O4 nanoparticles immersed in Isopar M. Ac-susceptibility data recorded at different frequencies and temperatures, χ″vs. T|f, reveals a major (~100 K) increase in the superspin blocking temperature of the Co0.2Fe2.8O4-based fluid (CFO) compared to its Fe3O4 counterpart (FO). We ascribe this behavior to the strengthening of the interparticle magnetic dipole interactions upon Co doping, as demonstrated by the relative χ″-peak temperature variation per frequency decade Φ=TT·log(f), which decreases from Φ~0.15 in FO to Φ~0.025 in CFO. In addition, χ″vs. T|f datasets from the CFO fluid reveal two magnetic events at temperatures Tp1 = 240 K and Tp2 = 275 K, both above the fluid’s freezing point (TF = 197 K). We demonstrate that the physical rotation of the nanoparticles within the fluid, the Brown mechanism, is entirely responsible for the collective superspin relaxation observed at Tp1, whereas the Néel mechanism, the superspin flip across an energy barrier within the particle, is dominant at Tp2. We confirm this finding through fits of models that describe the temperature dependence of the relaxation time via the two mechanisms: τB(T)=3η0VHkBTexpEkBTT0 and τNT=τ0expEBkBTT0. The best fits yield γ0=3η0VHkB = 1.5 × 10−8 s·K, E′/kB = 7 03 K, and T0′ = 201 K for the Brown relaxation, and EB/kB = 2818 K and T0 = 143 K for the Néel relaxation. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

11 pages, 2162 KiB  
Article
Non-Debye Behavior of the Néel and Brown Relaxation in Interacting Magnetic Nanoparticle Ensembles
by Cristian E. Botez and Jeffrey Knoop
Materials 2024, 17(16), 3957; https://doi.org/10.3390/ma17163957 - 9 Aug 2024
Cited by 2 | Viewed by 1370
Abstract
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of [...] Read more.
We used ac-susceptibility measurements to study the superspin relaxation in Fe3O4/Isopar M nanomagnetic fluids of different concentrations. Temperature-resolved data collected at different frequencies, χ″ vs. T|f, reveal magnetic events both below and above the freezing point of the carrier fluid (TF = 197 K): χ″ shows peaks at temperatures Tp1 and Tp2 around 75 K and 225 K, respectively. Below TF, the Néel mechanism is entirely responsible for the superspin relaxation (as the carrier fluid is frozen), and we found that the temperature dependence of the relaxation time, τN(Tp1), is well described by the Dorman–Bessais–Fiorani (DBF) model: τNT=τrexpEB+EadkB T. Above TF, both the internal (Néel) and the Brownian superspin relaxation mechanisms are active. Yet, we found evidence that the effective relaxation times, τeff, corresponding to the Tp2 peaks observed in the denser samples do not follow the typical Debye behavior described by the Rosensweig formula 1τeff=1τN+1τB. First, τeff is 5 × 10−5 s at 225 K, almost three orders of magnitude more that its Néel counterpart, τN~8 × 10−8 s, estimated by extrapolating the above-mentioned DBF analysis. Thus, 1τN1τeff, which is clearly not consistent with the Rosensweig formula. Second, the observed temperature dependence of the effective relaxation time, τeff(Tp2), is excellently described by τB1T=Tγ0expEkBTT0, a model solely based on the hydrodynamic Brown relaxation, τB(T)=3ηTVHkBT, combined with an activation law for the temperature variation of the viscosity, ηT=η0expE/kB(TT0. The best fit yields γ0=3ηVHkB = 1.6 × 10−5 s·K, E′/kB = 312 K, and T0′ = 178 K. Finally, the higher temperature Tp2 peaks vanish in the more diluted samples (δ ≤ 0.02). This indicates that the formation of larger hydrodynamic particles via aggregation, which is responsible for the observed Brownian relaxation in dense samples, is inhibited by dilution. Our findings, corroborating previous results from Monte Carlo calculations, are important because they might lead to new strategies to synthesize functional magnetic ferrofluids for biomedical applications. Full article
(This article belongs to the Special Issue Functional Nanoparticle Materials: From Synthesis to Application)
Show Figures

Figure 1

12 pages, 3883 KiB  
Article
Tuning the Superspin Dynamics in Inverse Spinel Ferrite Nanoparticle Ensembles via Indirect Cation Substitution
by Cristian E. Botez and Alex D. Price
Crystals 2024, 14(7), 580; https://doi.org/10.3390/cryst14070580 - 22 Jun 2024
Viewed by 1250
Abstract
We used magnetic and synchrotron X-ray diffraction measurements to investigate the possibility of tuning the strength of magnetic interparticle interactions in nanoparticle ensembles via chemical manipulation. Our main result comes from temperature-resolved in-phase ac-susceptibility data collected on 8 nm average-diameter Ni0.25Zn [...] Read more.
We used magnetic and synchrotron X-ray diffraction measurements to investigate the possibility of tuning the strength of magnetic interparticle interactions in nanoparticle ensembles via chemical manipulation. Our main result comes from temperature-resolved in-phase ac-susceptibility data collected on 8 nm average-diameter Ni0.25Zn0.75Fe2O4 (Ni25) and Ni0.5Zn0.5Fe2O4 (Ni50) nanoparticles at different frequencies, χ′ vs. T|f. We found that the relative peak temperature variation per frequency decade, ϕ=TT·log(f)—a known measure of interparticle interaction strength—exhibits a four-fold increase, from ϕ = 0.04 in Ni50 to ϕ = 0.16 in Ni25. This corresponds to a fundamental change in the nanoparticles’ superspin dynamics, as proven by the fit of phenomenological models to magnetic relaxation data. Indeed, the Ni25 ensemble exhibits superparamagnetic behavior, where the temperature dependence of the superspin relaxation time, τ, is described in the Dorman–Bessais–Fiorani (DBF) model: τT=τrexpEB+EadkBT,  with parameters τr = 4 × 10−12 s, and (EB + Ead)/kB = 1473 K. On the other hand, the nanoparticles in the Ni50 ensemble freeze collectively upon cooling in a spin-glass fashion according to a critical dynamics law: τ(T)=τ0TTg1zν, with τ0 = 4 × 10−8 s, Tg = 145 K, and zν = 7.2. Rietveld refinements against powder X-ray diffraction data reveal the structural details that underlie the observed magnetic behavior: an indirect cation replacement mechanism by which non-magnetic Zn ions are incorporated in the tetrahedral sites of the inverse spinel. Full article
Show Figures

Figure 1

11 pages, 2231 KiB  
Article
Ac-Susceptibility Studies of the Energy Barrier to Magnetization Reversal in Frozen Magnetic Nanofluids of Different Concentrations
by Cristian E. Botez and Alex D. Price
Appl. Sci. 2023, 13(16), 9416; https://doi.org/10.3390/app13169416 - 19 Aug 2023
Cited by 4 | Viewed by 1366
Abstract
We used ac-susceptibility to measure the blocking temperature, TB, and energy barrier to the magnetization reversal, EB, of nanomagnetic fluids of different concentrations, c. We collected data on five samples synthesized by dispersing Fe3O4 nanoparticles of [...] Read more.
We used ac-susceptibility to measure the blocking temperature, TB, and energy barrier to the magnetization reversal, EB, of nanomagnetic fluids of different concentrations, c. We collected data on five samples synthesized by dispersing Fe3O4 nanoparticles of average diameter ⟨D⟩ = 8 nm in different volumes of carrier fluid (hexane). We found that TB increases with the increase in c, a behavior predicted by the Dormann–Bessais–Fiorani (DBF) theory. In addition, our observed TB vs. c dependence is excellently described by a power law TB = A∙cγ, with A = 64 K and γ = 0.056. Our data also show that a Néel–Brown activation law τT=τ0expEBkBT describes the superspin dynamics in the most diluted sample, whereas an additional energy barrier term, Ead, is needed at higher concentrations, according to the DBF model: τT=τrexpEB+EadkBT.  We found EB/kB = 366 K and additional energy barriers Ead/kB that increase linearly with the common logarithm of the volume concentration, from 138 K at c = 8.3 × 10−4% to 745 K at c = 4 × 10−2%. These results add to our understanding of the contributions by different factors to the superspin dynamics. In addition, the quantitative relations that we established between the TB, Ead, and c support the current efforts towards the rational design of functional nanomaterials. Full article
Show Figures

Figure 1

9 pages, 2891 KiB  
Article
Evidence of Individual Superspin Relaxation in Diluted Fe3O4/Hexane Ferrofluids
by Cristian E. Botez and Zachary Mussslewhite
Materials 2023, 16(13), 4850; https://doi.org/10.3390/ma16134850 - 6 Jul 2023
Cited by 3 | Viewed by 1073
Abstract
We used dc magnetization and ac susceptibility to investigate the magnetic relaxation of ferrofluids made of 8 nm average-diameter Fe3O4 nanoparticles dispersed in hexane. Samples of different concentrations (δ) spanning two orders of magnitude ranging from 0.66 to 0.005 mg [...] Read more.
We used dc magnetization and ac susceptibility to investigate the magnetic relaxation of ferrofluids made of 8 nm average-diameter Fe3O4 nanoparticles dispersed in hexane. Samples of different concentrations (δ) spanning two orders of magnitude ranging from 0.66 to 0.005 mg (Fe3O4)/mL (hexane) were used to vary the interparticle interaction strength. Our data reveal a critical concentration, δc = 0.02 mg/mL, below which the ferrofluid behaves like an ideal nanoparticle ensemble where the superspins relax individually according to a Néel–Brown activation law τ(T) =τ0expEBkBT with a characteristic time τo ~10−9 s. That is further confirmed by the observed invariance of the relative peak temperature variation per frequency decade =TT·log(f), which stays constant at ~0.185 when δ < δc. At higher concentrations, between 0.02 and 0.66 mg/mL, we found that Δ exhibits a monotonic increase with the inverse concentration, 1δ, and the collective superspin dynamics is described by a Vogel–Fulcher law, τ(T) =τ0expEBkBTT0. Within this regime, the dipolar interaction strength parameter T0 increases from T0 = 0 K at δc = 0.02 mg/mL to T0 = 14.7 K at δ = 0.66 mg/mL. Full article
Show Figures

Figure 1

Back to TopTop