Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = supermassive black holes: non-thermal radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2267 KiB  
Article
Reconstruction of Fermi and eROSITA Bubbles from Magnetized Jet Eruption with Simulations
by Che-Jui Chang and Jean-Fu Kiang
Universe 2024, 10(7), 279; https://doi.org/10.3390/universe10070279 - 27 Jun 2024
Cited by 1 | Viewed by 1702
Abstract
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied [...] Read more.
The Fermi bubbles and the eROSITA bubbles around the Milky Way Galaxy are speculated to be the aftermaths of past jet eruptions from a supermassive black hole in the galactic center. In this work, a 2.5D axisymmetric relativistic magnetohydrodynamic (RMHD) model is applied to simulate a jet eruption from our galactic center and to reconstruct the observed Fermi bubbles and eROSITA bubbles. High-energy non-thermal electrons are excited around forward shock and discontinuity transition regions in the simulated plasma distributions. The γ-ray and X-ray emissions from these electrons manifest patterns on the skymap that match the observed Fermi bubbles and eROSITA bubbles, respectively, in shape, size and radiation intensity. The influence of the background magnetic field, initial mass distribution in the Galaxy, and the jet parameters on the plasma distributions and hence these bubbles is analyzed. Subtle effects on the evolution of plasma distributions attributed to the adoption of a galactic disk model versus a spiral-arm model are also studied. Full article
(This article belongs to the Special Issue Black Holes and Relativistic Jets)
Show Figures

Figure 1

13 pages, 450 KiB  
Article
A Machine Learning Approach for Predicting Black Hole Mass in Blazars Using Broadband Emission Model Parameters
by Krishna Kumar Singh, Anilkumar Tolamatti, Sandeep Godiyal, Atul Pathania and Kuldeep Kumar Yadav
Universe 2022, 8(10), 539; https://doi.org/10.3390/universe8100539 - 18 Oct 2022
Cited by 3 | Viewed by 1858
Abstract
Blazars are observed to emit non-thermal radiation across the entire electromagnetic spectrum from the radio to the very-high-energy γ-ray region. The broadband radiation measured from a blazar is dominated by emission from a relativistic plasma jet which is assumed to be powered [...] Read more.
Blazars are observed to emit non-thermal radiation across the entire electromagnetic spectrum from the radio to the very-high-energy γ-ray region. The broadband radiation measured from a blazar is dominated by emission from a relativistic plasma jet which is assumed to be powered by a spinning supermassive black hole situated in the central region of the host galaxy. The formation of jets, their mode of energy transport, actual power budget, and connection with the central black hole are among the most fundamental open problems in blazar research. However, the observed broadband spectral energy distribution from blazars is generally explained by a simple one-zone leptonic emission model. The model parameters place constraints on the contributions from the magnetic field, radiation field, and kinetic power of particles to the emission region in the jet. This in turn constrains the minimum power transported by the jet from the central engine. In this work, we explore the potential of machine learning frameworks including linear regression, support vector machine, adaptive boosting, bagging, gradient boosting, and random forests for the estimation of the mass of the supermassive black hole at the center of the host galaxy of blazars using the best-fit emission model parameters derived from the broadband spectral energy distribution modeling in the literature. Our study suggests that the support vector machine, adaptive boosting, bagging, and random forest algorithms can predict black hole masses with reasonably good accuracy. Full article
(This article belongs to the Special Issue Multi-Messengers of Black Hole Accretion and Emission)
Show Figures

Figure 1

10 pages, 256 KiB  
Proceeding Paper
Study of Periodic Signals from Blazars
by Gopal Bhatta
Proceedings 2019, 17(1), 15; https://doi.org/10.3390/proceedings2019017015 - 10 Dec 2019
Cited by 2 | Viewed by 1371
Abstract
The search for periodic signals from blazars has become an actively pursued field of research in recent years. This is because periodic signals bring us information about the processes occurring near the innermost regions of blazars, which are mostly inaccessible to our direct [...] Read more.
The search for periodic signals from blazars has become an actively pursued field of research in recent years. This is because periodic signals bring us information about the processes occurring near the innermost regions of blazars, which are mostly inaccessible to our direct view. Such signals provide insights into some of the extreme conditions that take place in the vicinity of supermassive black holes that lead to the launch of the relativistic jets. In addition, studies of characteristic timescales in blazar light curves shed light on some of the challenging issues in blazar physics that include disk-jet connection, strong gravity near fast-rotating supermassive black holes and release of gravitational waves from binary supermassive black hole systems. However, a number of issues associated with the search for quasi-periodic oscillations (QPOs) in blazars e.g., red-noise dominance, modest significance of the detection, periodic modulation lasting for only a couple of cycles and their transient nature, make it difficult to estimate the true significance of the detection. Consequently, it also becomes difficult to make meaningful inferences about the nature of the on-going processes. In this proceedings, results of study focused on searching for QPOs in a number of blazar multi-frequency light curves are summarized. The time series analyses of long term observations of the blazars revealed the presence of year-timescale QPOs in the sources including OJ 287 (optical), Mrk 501 (gamma-ray), J1043+2408 (radio) and PKS 0219-164 (radio). A likely explanations, we discuss a number of scenarios including binary supermassive black hole systems, lense-thirring precession, and jet precession. Full article
(This article belongs to the Proceedings of Recent Progress in Relativistic Astrophysics)
11 pages, 559 KiB  
Article
Detection of Periodic Radio Signal from the Blazar J1043+2408
by Gopal Bhatta
Galaxies 2018, 6(4), 136; https://doi.org/10.3390/galaxies6040136 - 6 Dec 2018
Cited by 26 | Viewed by 3713
Abstract
The search for periodic signals from blazars has become a widely discussed topic in recent years. In the scenario that such periodic changes originate from the innermost regions of blazars, the signals bear imprints of the processes occurring near the central engine, which [...] Read more.
The search for periodic signals from blazars has become a widely discussed topic in recent years. In the scenario that such periodic changes originate from the innermost regions of blazars, the signals bear imprints of the processes occurring near the central engine, which are mostly inaccessible to our direct view. Such signals provide insights into various aspect of blazar studies, including disk-jet connection, magnetic-field configuration and, more importantly, strong gravity near the supermassive black holes and release of gravitational waves from binary supermassive-black-hole systems. In this work, we report the detection of a periodic signal in the radio light curve of blazar J1043+2408 spanning ∼10.5 years. We performed multiple methods of time-series analysis, namely, epoch folding, Lomb–Scargle periodogram, and discrete autocorrelation function. All three methods consistently revealed a repeating signal with a periodicity of ∼560 days. To robustly account for the red-noise processes usually dominant in the blazar variability and other possible artefacts, a large number of Monte Carlo simulations were performed. This allowed us to estimate high significance (99.9% local and 99.4% global) against possible spurious detection. As possible explanations, we discuss a number of scenarios, including binary supermassive-black-hole systems, Lense–Thirring precession, and jet precession. Full article
Show Figures

Figure 1

14 pages, 5786 KiB  
Review
The First- and Second-Order Fermi Acceleration Processes in BL Lacertae Objects
by Bidzina Kapanadze
Galaxies 2018, 6(4), 125; https://doi.org/10.3390/galaxies6040125 - 25 Nov 2018
Cited by 1 | Viewed by 3965
Abstract
BL Lacertae objects constitute a rare class of active galactic nuclei with extreme observational features attributed to the Doppler-boosted emission from a relativistic jet, closely aligned to our line-of-sight. Their spectral energy distribution, extending over 17–19 orders of frequency from radio to the [...] Read more.
BL Lacertae objects constitute a rare class of active galactic nuclei with extreme observational features attributed to the Doppler-boosted emission from a relativistic jet, closely aligned to our line-of-sight. Their spectral energy distribution, extending over 17–19 orders of frequency from radio to the TeV energy range, is of non-thermal origin and shows a typical two-component structure. The lower-energy component, ranging from the radio to X-rays in the high-energy peaked BL Lacertae sources, is widely accepted to be a synchrotron radiation emitted by ultra-relativistic charged particles, to be initially accelerated via the Blandford–Znajek mechanism or magneto-hydrodynamic processes in the vicinity of the central super-massive black hole. However, the accelerated particles should lose the energy, sufficient for the emission of the keV-GeV photons, very quickly and the source can maintain its flaring state on the daily-weekly timescales only if some additional acceleration mechanisms are continuously at work. According to different studies and simulations, the particles can gain tremendous energies due to the propagation of relativistic shocks through the jet: By means of first-order Fermi mechanism at the shock front, or they undergo an efficient stochastic (second-order Fermi) acceleration close to the shock front, in the turbulent jet medium. Our intensive X-ray spectral study of TeV-detected, bright BL Lacertae objects (Mrk 421, 1ES 1959+650, Mrk 501) often show the signatures of the stochastic acceleration, while those related to the first-order Fermi process arefound relatively rarely. The TeV-undetected sources (1H 1516+660, BZB J1341+3959, BZB J1237+6258) mostly do not show the signatures of the efficient stochastic acceleration in their jets. Full article
(This article belongs to the Special Issue Monitoring the Non-Thermal Universe)
Show Figures

Figure 1

Back to TopTop