Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = sunitinib (SU)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5206 KiB  
Article
Fibroblast Growth Factor 2 (FGF2) Activates Vascular Endothelial Growth Factor (VEGF) Signaling in Gastrointestinal Stromal Tumors (GIST): An Autocrine Mechanism Contributing to Imatinib Mesylate (IM) Resistance
by Sergei Boichuk, Pavel Dunaev, Aigul Galembikova and Elena Valeeva
Cancers 2024, 16(17), 3103; https://doi.org/10.3390/cancers16173103 - 7 Sep 2024
Cited by 2 | Viewed by 2137
Abstract
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 [...] Read more.
We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms. Full article
Show Figures

Figure 1

12 pages, 2187 KiB  
Article
Catfish Egg Lectin Enhances the Cytotoxicity of Sunitinib on Gb3-Expressing Renal Cancer Cells
by Jun Ito, Shigeki Sugawara, Takeo Tatsuta, Masahiro Hosono and Makoto Sato
Biomedicines 2023, 11(8), 2317; https://doi.org/10.3390/biomedicines11082317 - 21 Aug 2023
Cited by 2 | Viewed by 1446
Abstract
Metastatic renal cell carcinoma (RCC) is not sufficiently responsive to anticancer drugs, and thus, developing new drugs for advanced RCC remains vital. We previously reported that the treatment of globotriaosylceramide (Gb3)-expressing cells with catfish (Silurus asotus) egg lectin (SAL) increased the [...] Read more.
Metastatic renal cell carcinoma (RCC) is not sufficiently responsive to anticancer drugs, and thus, developing new drugs for advanced RCC remains vital. We previously reported that the treatment of globotriaosylceramide (Gb3)-expressing cells with catfish (Silurus asotus) egg lectin (SAL) increased the intracellular uptake of propidium iodide (PI) and sunitinib (SU). Herein, we investigated whether SAL pretreatment affects the intracellular uptake and cytotoxic effects of molecular-targeted drugs in RCC cells. We analyzed Gb3 expression in TOS1, TOS3, TOS3LN, and ACHN human RCC cells. Surface Gb3 expression was higher in TOS1 and TOS3 cells than in TOS3LN and ACHN cells. In the PI uptake assay, 41.5% of TOS1 cells and 21.1% of TOS3 cells treated with SAL were positive for PI. TOS1 cell viability decreased to 70% after treatment with 25 µM SU alone and to 48% after pretreatment with SAL (50 µg/mL). Time-series measurements of the intracellular fluorescence of SU revealed significantly enhanced SU uptake in SAL-treated TOS1 cells compared to control cells. SAL treatment did not increase PI uptake in normal renal cells. Our findings suggest that adequate cytotoxic activity may be achieved even when SU is administered at a sufficiently low dose not to cause side effects in combination with SAL. Full article
(This article belongs to the Special Issue Advances in the Treatment of Kidney and Upper Urinary Tract Cancers)
Show Figures

Figure 1

19 pages, 850 KiB  
Article
Neuropsychiatric Adverse Drug Reactions with Tyrosine Kinase Inhibitors in Gastrointestinal Stromal Tumors: An Analysis from the European Spontaneous Adverse Event Reporting System
by Maria Antonietta Barbieri, Emanuela Elisa Sorbara, Giulia Russo, Giuseppe Cicala, Tindara Franchina, Mariacarmela Santarpia, Nicola Silvestris and Edoardo Spina
Cancers 2023, 15(6), 1851; https://doi.org/10.3390/cancers15061851 - 20 Mar 2023
Cited by 13 | Viewed by 3195
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in gastrointestinal stromal tumors (GISTs). The aim of this study is to evaluate the reporting frequency of neuropsychiatric adverse drug reactions (ADRs) for TKIs through the analysis of European individual case safety reports (ICSRs). All ICSRs [...] Read more.
Tyrosine kinase inhibitors (TKIs) are widely used in gastrointestinal stromal tumors (GISTs). The aim of this study is to evaluate the reporting frequency of neuropsychiatric adverse drug reactions (ADRs) for TKIs through the analysis of European individual case safety reports (ICSRs). All ICSRs collected in EudraVigilance up to 31 December 2021 with one TKI having GISTs as an indication (imatinib (IM), sunitinib (SU), avapritinib (AVA), regorafenib (REG), and ripretinib (RIP)) were included. A disproportionality analysis was performed to assess the frequency of reporting for each TKI compared to all other TKIs. The number of analyzed ICSRs was 8512, of which 57.9% were related to IM. Neuropsychiatric ADRs were reported at least once in 1511 ICSRs (17.8%). A higher reporting probability of neuropsychiatric ADRs was shown for AVA. Most neuropsychiatric ADRs were known, except for a higher frequency of lumbar spinal cord and nerve root disorders (reporting odds ratio, ROR 4.46; confidence interval, CI 95% 1.58–12.54), olfactory nerve disorders (8.02; 2.44–26.33), and hallucinations (22.96; 8.45–62.36) for AVA. The analyses of European ICSRs largely confirmed the safety profiles of TKIs in GISTs, but some ADRs are worthy of discussion. Further studies are needed to increase the knowledge of the neuropsychiatric disorders of newly approved TKIs. Full article
Show Figures

Figure 1

17 pages, 14205 KiB  
Article
Mechanism of Vascular Toxicity in Rats Subjected to Treatment with a Tyrosine Kinase Inhibitor
by Claudia Reyes-Goya, Álvaro Santana-Garrido, Estefanía Soto-Astacio, Óscar Aramburu, Sonia Zambrano, Alfonso Mate and Carmen M. Vázquez
Toxics 2020, 8(3), 49; https://doi.org/10.3390/toxics8030049 - 20 Jul 2020
Cited by 4 | Viewed by 3123
Abstract
Sunitinib (Su) is a tyrosine kinase inhibitor with antiangiogenic and antineoplastic effects that is recommended therapy for renal cell carcinoma, gastrointestinal stromal tumors, and pancreatic neuroendocrine tumors. Arterial hypertension is one of the adverse effects observed in the treatment with Su. The aim [...] Read more.
Sunitinib (Su) is a tyrosine kinase inhibitor with antiangiogenic and antineoplastic effects that is recommended therapy for renal cell carcinoma, gastrointestinal stromal tumors, and pancreatic neuroendocrine tumors. Arterial hypertension is one of the adverse effects observed in the treatment with Su. The aim of this work was to deepen our understanding of the underlying mechanisms involved in the development of this side effect. Studies on endothelial function, vascular remodeling and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) system were carried out in thoracic aortas from rats treated with Su for three weeks. Animals subjected to Su treatment presented with increased blood pressure and reduced endothelium-dependent vasodilation, the latter being reverted by NADPH oxidase blockade. Furthermore, vascular remodeling and stronger Masson trichrome staining, together with enhanced immunofluorescence signal for collagen 1 alpha 1 (Col1α1), were observed in aortas from treated animals. These results were accompanied by a significant elevation in superoxide anion production and the activity/protein/gene expression of NADPH oxidase isoforms (NOX1, NOX2, and NOX4), which was also prevented by NOX inhibition. Furthermore, a decrease in nitric oxide (NO) levels and endothelial nitric oxide synthase (eNOS) activation was observed in aortas from Su-treated animals. All these results indicate that endothelial dysfunction secondary to changes in vascular remodeling and oxidative stress might be responsible for the typical arterial hypertension that develops following treatment with Su. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

24 pages, 4842 KiB  
Article
Inhibition of FGF2-Mediated Signaling in GIST—Promising Approach for Overcoming Resistance to Imatinib
by Sergei Boichuk, Aigul Galembikova, Ekaterina Mikheeva, Firuza Bikinieva, Aida Aukhadieva, Pavel Dunaev, Dinar Khalikov, Semen Petrov, Refat Kurtasanov, Elena Valeeva, Igor Kireev, Vera Dugina, Anna Lushnikova, Maria Novikova and Pavel Kopnin
Cancers 2020, 12(6), 1674; https://doi.org/10.3390/cancers12061674 - 24 Jun 2020
Cited by 15 | Viewed by 4548
Abstract
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that [...] Read more.
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs. Full article
(This article belongs to the Special Issue Management of Soft Tissue Sarcomas and GIST)
Show Figures

Figure 1

8 pages, 169 KiB  
Article
Phase II Testing of Sunitinib: The National Cancer Institute of Canada Clinical Trials Group IND Program Trials IND.182–185
by R. Buckstein, R. M. Meyer, L. Seymour, J. Biagi, H. MacKay, S. Laurie and E. Eisenhauer
Curr. Oncol. 2007, 14(4), 154-161; https://doi.org/10.3747/co.2007.132 - 1 Aug 2007
Cited by 39 | Viewed by 1245
Abstract
Sunitinib (SU11248) is an orally bioavailable inhibitor that affects the receptor tyrosine kinases involved in tumour proliferation and angiogenesis, including vascular endothelial growth factor (vegf) receptors 1, 2, 3, and platelet-derived growth factor receptors alpha (pdgfra) and beta ( [...] Read more.
Sunitinib (SU11248) is an orally bioavailable inhibitor that affects the receptor tyrosine kinases involved in tumour proliferation and angiogenesis, including vascular endothelial growth factor (vegf) receptors 1, 2, 3, and platelet-derived growth factor receptors alpha (pdgfra) and beta (pdgfrb). Because angiogenesis is necessary for the growth and metastasis of solid tumours, and vegf is believed to have a pivotal role in that process, sunitinib treatment may have broad-spectrum clinical utility. In the present article, we discuss the biologic and clinical rationales that have recently led the Investigational New Drug Program of the National Cancer Institute of Canada Clinical Trials Group to initiate four phase ii trials testing this agent in the following four different tumour types: relapsed diffuse large cell lymphoma, malignant pleural mesothelioma, locally advanced or metastatic cervical cancer and recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma. Full article
Back to TopTop