Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = stress kinase PKR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3286 KiB  
Article
Poxvirus K3 Orthologs Regulate NF-κB-Dependent Inflammatory Responses by Targeting the PKR–eIF2α Axis in Multiple Species
by Huibin Yu, Mary Eloise L. Fernandez, Chen Peng, Dewi Megawati, Greg Brennan, Loubna Tazi and Stefan Rothenburg
Vaccines 2025, 13(8), 800; https://doi.org/10.3390/vaccines13080800 - 28 Jul 2025
Viewed by 317
Abstract
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by [...] Read more.
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by viral inhibitors remain largely unexplored. This study aimed to characterize the conserved antiviral and inflammatory roles of mammalian PKR orthologs and investigate their modulation by poxviral inhibitors. Methods: Using reporter gene assays and quantitative RT-PCR, we assessed the impact of 17 mammalian PKR orthologs on general translation inhibition, stress-responsive translation, and NF-κB-dependent induction of target genes. Congenic human and rabbit cell lines infected with a myxoma virus strain lacking PKR inhibitors were used to compare the effects of human and rabbit PKR on viral replication and inflammatory responses. Site-directed mutagenesis was employed to determine key residues responsible for differential sensitivity to the viral inhibitor M156. Results: All 17 mammalian PKR orthologs significantly inhibited general translation, strongly activated stress-responsive ATF4 translation, and robustly induced NF-κB target genes. Inhibition of these responses was specifically mediated by poxviral K3 orthologs that effectively suppressed PKR activation. Comparative analyses showed human and rabbit PKRs similarly inhibited virus replication and induced cytokine transcripts. Amino acid swaps between rabbit PKRs reversed their sensitivity to viral inhibitor M156 and NF-κB activation. Conclusions: Our data show that the tested PKR orthologs exhibit conserved dual antiviral and inflammatory regulatory roles, which can be antagonized by poxviral K3 orthologs that exploit eIF2α mimicry to modulate the PKR-NF-κB axis. Full article
(This article belongs to the Special Issue Antiviral Immunity and Vaccine Development)
Show Figures

Figure 1

33 pages, 9086 KiB  
Review
Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review
by Mengyi Liu, Chunlong Liu, Puba Zhaxi, Xiaohong Kou, Yazhou Liu and Zhaohui Xue
Antioxidants 2025, 14(4), 378; https://doi.org/10.3390/antiox14040378 - 22 Mar 2025
Cited by 1 | Viewed by 1462
Abstract
As a prevalent metabolic disorder, the increasing incidence of diabetes imposes a significant burden on global healthcare. Flavonoids in natural phytochemical products exhibit notable hypoglycemic properties, making them potential alternatives for diabetes treatment. This article summarizes the hypoglycemic properties of flavonoid subcategories studied [...] Read more.
As a prevalent metabolic disorder, the increasing incidence of diabetes imposes a significant burden on global healthcare. Flavonoids in natural phytochemical products exhibit notable hypoglycemic properties, making them potential alternatives for diabetes treatment. This article summarizes the hypoglycemic properties of flavonoid subcategories studied in recent years, including flavones, isoflavones, flavonols, flavanols, and others. The relevant targets and signal pathways, such as α-amylase, α-glucosidase, insulin receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), PKR-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)/activation transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP), etc., are also elaborated. Additionally, flavonoids have also been demonstrated to modulate the gut microbiota and its metabolites. Through the aforementioned mechanisms, flavonoids mainly suppress carbohydrate metabolism and gluconeogenesis; facilitate glucose uptake, glycogenesis, and insulin secretion; and mitigate insulin resistance, oxidative stress, inflammation, etc. Notably, several studies have indicated that certain flavonoids displayed synergistic hypoglycemic effects. In conclusion, this article provides a comprehensive review of the hypoglycemic effects of the flavonoids investigated in recent years, aiming to offer theoretical insights for their further exploration. Full article
Show Figures

Graphical abstract

24 pages, 6076 KiB  
Article
Betacoronaviruses Differentially Activate the Integrated Stress Response to Optimize Viral Replication in Lung-Derived Cell Lines
by David M. Renner, Nicholas A. Parenti, Nicole Bracci and Susan R. Weiss
Viruses 2025, 17(1), 120; https://doi.org/10.3390/v17010120 - 16 Jan 2025
Cited by 1 | Viewed by 1534
Abstract
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus—HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)—, to study betacoronavirus interactions [...] Read more.
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus—HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)—, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals)
Show Figures

Figure 1

20 pages, 4235 KiB  
Article
PKR Mediates the Mitochondrial Unfolded Protein Response through Double-Stranded RNA Accumulation under Mitochondrial Stress
by Fedho Kusuma, Soyoung Park, Kim Anh Nguyen, Rosalie Elvira, Duckgue Lee and Jaeseok Han
Int. J. Mol. Sci. 2024, 25(14), 7738; https://doi.org/10.3390/ijms25147738 - 15 Jul 2024
Cited by 2 | Viewed by 2256
Abstract
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms [...] Read more.
Mitochondrial stress, resulting from dysfunction and proteostasis disturbances, triggers the mitochondrial unfolded protein response (UPRMT), which activates gene encoding chaperones and proteases to restore mitochondrial function. Although ATFS-1 mediates mitochondrial stress UPRMT induction in C. elegans, the mechanisms relaying mitochondrial stress signals to the nucleus in mammals remain poorly defined. Here, we explored the role of protein kinase R (PKR), an eIF2α kinase activated by double-stranded RNAs (dsRNAs), in mitochondrial stress signaling. We found that UPRMT does not occur in cells lacking PKR, indicating its crucial role in this process. Mechanistically, we observed that dsRNAs accumulate within mitochondria under stress conditions, along with unprocessed mitochondrial transcripts. Furthermore, we demonstrated that accumulated mitochondrial dsRNAs in mouse embryonic fibroblasts (MEFs) deficient in the Bax/Bak channels are not released into the cytosol and do not induce the UPRMT upon mitochondrial stress, suggesting a potential role of the Bax/Bak channels in mediating the mitochondrial stress response. These discoveries enhance our understanding of how cells maintain mitochondrial integrity, respond to mitochondrial dysfunction, and communicate stress signals to the nucleus through retrograde signaling. This knowledge provides valuable insights into prospective therapeutic targets for diseases associated with mitochondrial stress. Full article
Show Figures

Figure 1

25 pages, 4074 KiB  
Article
Chandipura Virus Forms Cytoplasmic Inclusion Bodies through Phase Separation and Proviral Association of Cellular Protein Kinase R and Stress Granule Protein TIA-1
by Sharmistha Sarkar, Surajit Ganguly, Nirmal K. Ganguly, Debi P. Sarkar and Nishi Raj Sharma
Viruses 2024, 16(7), 1027; https://doi.org/10.3390/v16071027 - 26 Jun 2024
Cited by 8 | Viewed by 4792
Abstract
Negative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence [...] Read more.
Negative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence of phosphorylation of eukaryotic initiation factor 2α (eIF2α) through condensation of several RNA-binding proteins including TIA-1. Whether and how Chandipura virus (CHPV), an emerging human pathogen causing influenza-like illness, coma and death, forms IBs and evades antiviral SGs remain unknown. By confocal imaging on CHPV-infected Vero-E6 cells, we found that CHPV infection does not induce formation of distinct canonical SGs. Instead, CHPV proteins condense and co-localize together with SG proteins to form heterogeneous IBs, which ensued independent of the activation of eIF2α and eIF2α kinase, protein kinase R (PKR). Interestingly, siRNA-mediated depletion of PKR or TIA-1 significantly decreased viral transcription and virion production. Moreover, CHPV infection also caused condensation and recruitment of PKR to IBs. Compared to SGs, IBs exhibited significant rapidity in disassembly dynamics. Altogether, our study demonstrating that CHPV replication co-optimizes with SG proteins and revealing an unprecedented proviral role of TIA-1/PKR may have implications in understanding the mechanisms regulating CHPV-IB formation and designing antiviral therapeutics. Importance: CHPV is an emerging tropical pathogen reported to cause acute influenza-like illness and encephalitis in children with a very high mortality rate of ~70%. Lack of vaccines and an effective therapy against CHPV makes it a potent pathogen for causing an epidemic in tropical parts of globe. Given these forewarnings, it is of paramount importance that CHPV biology must be understood comprehensively. Targeting of host factors offers several advantages over targeting the viral components due to the generally higher mutation rate in the viral genome. In this study, we aimed at understanding the role of SGs forming cellular RNA-binding proteins in CHPV replication. Our study helps understand participation of cellular factors in CHPV replication and could help develop effective therapeutics against the virus. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

10 pages, 3647 KiB  
Hypothesis
RNA Activators of Stress Kinase PKR within Human Genes That Control Splicing or Translation Create Novel Targets for Hereditary Diseases
by Raymond Kaempfer
Int. J. Mol. Sci. 2024, 25(2), 1323; https://doi.org/10.3390/ijms25021323 - 22 Jan 2024
Viewed by 2126
Abstract
Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. [...] Read more.
Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, interferon-γ (IFNG) mRNA activates PKR through a 5′-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. Tumor necrosis factor-α (TNF) pre-mRNA encodes within the 3′-untranslated region (3′-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression. Adult and fetal globin genes encode pre-mRNA structures that strongly activate PKR, leading to eIF2α phosphorylation that greatly enhances spliceosome assembly and splicing, yet also structures that silence PKR activation upon splicing to allow for unabated globin mRNA translation essential for life. Regulatory circuits resulting in each case from PKR activation were reviewed previously. Here, we analyze mutations within these genes created to delineate the RNA structures that activate PKR and to deconvolute their folding. Given the critical role of intragenic RNA activators of PKR in gene regulation, such mutations reveal novel potential RNA targets for human disease. Full article
(This article belongs to the Special Issue RNA in Human Diseases: Challenges and Opportunities)
Show Figures

Graphical abstract

16 pages, 6447 KiB  
Article
Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells
by Ching-Sheng Hung, Kun-Lin Lee, Wei-Jan Huang, Fang-He Su and Yu-Chih Liang
Int. J. Mol. Sci. 2023, 24(22), 16467; https://doi.org/10.3390/ijms242216467 - 17 Nov 2023
Cited by 5 | Viewed by 2876
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer [...] Read more.
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 870 KiB  
Review
Unfolded Protein Response Signaling in Liver Disorders: A 2023 Updated Review
by Smriti Shreya, Christophe F. Grosset and Buddhi Prakash Jain
Int. J. Mol. Sci. 2023, 24(18), 14066; https://doi.org/10.3390/ijms241814066 - 14 Sep 2023
Cited by 18 | Viewed by 3727
Abstract
Endoplasmic reticulum (ER) is the site for synthesis and folding of secreted and transmembrane proteins. Disturbance in the functioning of ER leads to the accumulation of unfolded and misfolded proteins, which finally activate the unfolded protein response (UPR) signaling. The three branches of [...] Read more.
Endoplasmic reticulum (ER) is the site for synthesis and folding of secreted and transmembrane proteins. Disturbance in the functioning of ER leads to the accumulation of unfolded and misfolded proteins, which finally activate the unfolded protein response (UPR) signaling. The three branches of UPR—IRE1 (Inositol requiring enzyme 1), PERK (Protein kinase RNA-activated (PKR)-like ER kinase), and ATF6 (Activating transcription factor 6)—modulate the gene expression pattern through increased expression of chaperones and restore ER homeostasis by enhancing ER protein folding capacity. The liver is a central organ which performs a variety of functions which help in maintaining the overall well-being of our body. The liver plays many roles in cellular physiology, blood homeostasis, and detoxification, and is the main site at which protein synthesis occurs. Disturbance in ER homeostasis is triggered by calcium level imbalance, change in redox status, viral infection, and so on. ER dysfunction and subsequent UPR signaling participate in various hepatic disorders like metabolic (dysfunction) associated fatty liver disease, liver cancer, viral hepatitis, and cholestasis. The exact role of ER stress and UPR signaling in various liver diseases is not fully understood and needs further investigation. Targeting UPR signaling with drugs is the subject of intensive research for therapeutic use in liver diseases. The present review summarizes the role of UPR signaling in liver disorders and describes why UPR regulators are promising therapeutic targets. Full article
Show Figures

Figure 1

26 pages, 5412 KiB  
Article
Macrophage Reprogramming via the Modulation of Unfolded Protein Response with siRNA-Loaded Magnetic Nanoparticles in a TAM-like Experimental Model
by Annarita D’Urso, Francesca Oltolina, Chiara Borsotti, Maria Prat, Donato Colangelo and Antonia Follenzi
Pharmaceutics 2023, 15(6), 1711; https://doi.org/10.3390/pharmaceutics15061711 - 12 Jun 2023
Cited by 10 | Viewed by 2458
Abstract
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an [...] Read more.
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an irregular unfolded protein response (UPR) in their endoplasmic reticulum (ER) to endure environmental stress and ensure anti-cancer immunity. Therefore, nanotechnology could be an attractive tool to modulate the UPR in TAMs, providing an alternative strategy for TAM-targeted repolarization therapy. Herein, we developed and tested polydopamine-coupled magnetite nanoparticles (PDA-MNPs) functionalized with small interfering RNAs (siRNA) to downregulate the protein kinase R (PKR)-like ER kinase (PERK) expression in TAM-like macrophages derived from murine peritoneal exudate (PEMs). After the evaluation of the cytocompatibility, the cellular uptake, and the gene silencing efficiency of PDA-MNPs/siPERK in PEMs, we analyzed their ability to re-polarize in vitro these macrophages from M2 to the M1 inflammatory anti-tumor phenotype. Our results indicate that PDA-MNPs, with their magnetic and immunomodulator features, are cytocompatible and able to re-educate TAMs toward the M1 phenotype by PERK inhibition, a UPR effector contributing to TAM metabolic adaptation. These findings can provide a novel strategy for the development of new tumor immunotherapies in vivo. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles for Bone Regeneration and Cancer Therapy)
Show Figures

Figure 1

11 pages, 1592 KiB  
Review
Positive Regulation of Splicing of Cellular and Viral mRNA by Intragenic RNA Elements That Activate the Stress Kinase PKR, an Antiviral Mechanism
by Raymond Kaempfer
Genes 2023, 14(5), 974; https://doi.org/10.3390/genes14050974 - 26 Apr 2023
Cited by 1 | Viewed by 2333
Abstract
The transient activation of the cellular stress kinase, protein kinase RNA-activated (PKR), by double-helical RNA, especially by viral double-stranded RNA generated during replication, results in the inhibition of translation via the phosphorylation of eukaryotic initiation factor 2 α-chain (eIF2α). Exceptionally, short intragenic elements [...] Read more.
The transient activation of the cellular stress kinase, protein kinase RNA-activated (PKR), by double-helical RNA, especially by viral double-stranded RNA generated during replication, results in the inhibition of translation via the phosphorylation of eukaryotic initiation factor 2 α-chain (eIF2α). Exceptionally, short intragenic elements within primary transcripts of the human tumor necrosis factor (TNF-α) and globin genes, genes essential for survival, can form RNA structures that strongly activate PKR and thereby render the splicing of their mRNAs highly efficient. These intragenic RNA activators of PKR promote early spliceosome assembly and splicing by inducing phosphorylation of nuclear eIF2α, without impairing the translation of the mature spliced mRNA. Unexpectedly, excision of the large human immunodeficiency virus (HIV) rev/tat intron was shown to require activation of PKR by the viral RNA and eIF2α phosphorylation. The splicing of rev/tat mRNA is abrogated by viral antagonists of PKR and by trans-dominant negative mutant PKR, yet enhanced by the overexpression of PKR. The TNFα and HIV RNA activators of PKR fold into compact pseudoknots that are highly conserved within the phylogeny, supporting their essential role in the upregulation of splicing. HIV provides the first example of a virus co-opting a major cellular antiviral mechanism, the activation of PKR by its RNA, to promote splicing. Full article
(This article belongs to the Section RNA)
Show Figures

Graphical abstract

23 pages, 3739 KiB  
Article
Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview
by Laura Bianchi, Isabella Damiani, Silvia Castiglioni, Alfonso Carleo, Rossana De Salvo, Clara Rossi, Alberto Corsini and Stefano Bellosta
Int. J. Mol. Sci. 2023, 24(7), 6431; https://doi.org/10.3390/ijms24076431 - 29 Mar 2023
Cited by 8 | Viewed by 4009
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with [...] Read more.
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

23 pages, 5738 KiB  
Article
Viral Hemorrhagic Septicemia Virus Activates Integrated Stress Response Pathway and Induces Stress Granules to Regulate Virus Replication
by Barkha Ramnani, Shelby Powell, Adarsh G. Shetty, Praveen Manivannan, Brian R. Hibbard, Douglas W. Leaman and Krishnamurthy Malathi
Viruses 2023, 15(2), 466; https://doi.org/10.3390/v15020466 - 7 Feb 2023
Cited by 3 | Viewed by 3601
Abstract
Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition [...] Read more.
Virus infection activates integrated stress response (ISR) and stress granule (SG) formation and viruses counteract by interfering with SG assembly, suggesting an important role in antiviral defense. The infection of fish cells by Viral Hemorrhagic Septicemia Virus (VHSV), activates the innate immune recognition pathway and the production of type I interferon (IFN). However, the mechanisms by which VHSV interacts with ISR pathway regulating SG formation is poorly understood. Here, we demonstrate that fish cells respond to heat shock, oxidative stress and VHSV infection by forming SG that localized key SG marker, Ras GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1). We show that PKR-like endoplasmic reticulum kinase (PERK), but not (dsRNA)-dependent protein kinase (PKR), is required for VHSV-induced SG formation. Furthermore, in VHSV Ia infected cells, PERK activity is required for IFN production, antiviral signaling and viral replication. SG formation required active virus replication as individual VHSV Ia proteins or inactive virus did not induce SG. Cells lacking G3BP1 produced increased IFN, antiviral genes and viral mRNA, however viral protein synthesis and viral titers were reduced. We show a critical role of the activation of ISR pathway and SG formation highlighting a novel role of G3BP1 in regulating VHSV protein translation and replication. Full article
(This article belongs to the Special Issue Fish Antiviral Immunity)
Show Figures

Figure 1

15 pages, 4711 KiB  
Article
The Integrated Stress Response Is Tumorigenic and Constitutes a Therapeutic Liability in Somatotroph Adenomas
by Zhenye Li, Yiyuan Chen, Xiaohui Yao, Qian Liu, Haibo Zhu, Yazhuo Zhang, Jie Feng and Hua Gao
Int. J. Mol. Sci. 2022, 23(21), 13067; https://doi.org/10.3390/ijms232113067 - 28 Oct 2022
Cited by 1 | Viewed by 2114
Abstract
Somatotroph adenomas are the leading cause of acromegaly, with the nearly sparsely granulated somatotroph subtype belonging to high-risk adenomas, and they are less responsive to medical treatment. The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of [...] Read more.
Somatotroph adenomas are the leading cause of acromegaly, with the nearly sparsely granulated somatotroph subtype belonging to high-risk adenomas, and they are less responsive to medical treatment. The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. In this study, we identified the characteristic profiling of the integrated stress response in translocation and translation initiation factor activity in somatotroph adenomas, normal pituitary, or other adenoma subtypes through proteomics. Immunohistochemistry exhibited the differential significance and the priority of eukaryotic translation initiation factor 2β (EIF2β) in somatotroph adenomas compared with gonadotroph and corticotroph adenomas. Differentially expressed genes based on the level of EIF2β in somatotroph adenomas were revealed. MetaSape pathways showed that EIF2β was involved in regulating growth and cell activation, immune system, and extracellular matrix organization processes. The correlation analysis showed Spearman correlation coefficients of r = 0.611 (p < 0.001) for EIF2β and eukaryotic translation initiation factor 2 alpha kinase 1 (HRI), r = 0.765 (p < 0.001) for eukaryotic translation initiation factor 2 alpha kinase 2 (PKR), r = 0.813 (p < 0.001) for eukaryotic translation initiation factor 2 alpha kinase 3 (PERK), r = 0.728 (p < 0.001) for GCN2, and r = 0.732 (p < 0.001) for signal transducer and activator of transcription 3 (STAT3). Furthermore, the invasive potential in patients with a high EIF2β was greater than that in patients with a low EIF2β (7/10 vs. 4/18, p = 0.038), with a lower immune-cell infiltration probability (p < 0.05). The ESTIMATE algorithm showed that the levels of activation of the EIF2 pathway were negatively correlated with the immune score in somatotroph adenomas (p < 0.001). In in vitro experiments, the knockdown of EIF2β changed the phenotype of somatotroph adenomas, including cell proliferation, migration, and the secretion ability of growth hormone/insulin-like growth factor-1. In this study, we demonstrate that the ISR is pivotal in somatotroph adenomas and provide a rationale for implementing ISR-based regimens in future treatment strategies. Full article
(This article belongs to the Special Issue Molecular Biology of the Pituitary—3rd Edition)
Show Figures

Figure 1

20 pages, 32534 KiB  
Article
Optimization of a Novel Mandelamide-Derived Pyrrolopyrimidine Series of PERK Inhibitors
by Michael E. Stokes, Matthew D. Surman, Veronica Calvo, David Surguladze, An-Hu Li, Jennifer Gasparek, Matthew Betzenhauser, Guangyu Zhu, Hongwen Du, Alan C. Rigby and Mark J. Mulvihill
Pharmaceutics 2022, 14(10), 2233; https://doi.org/10.3390/pharmaceutics14102233 - 19 Oct 2022
Cited by 7 | Viewed by 3372
Abstract
The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of three endoplasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) responsible for regulating protein synthesis and alleviating ER stress. PERK has been implicated in tumorigenesis, cancer cell survival as [...] Read more.
The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of three endoplasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) responsible for regulating protein synthesis and alleviating ER stress. PERK has been implicated in tumorigenesis, cancer cell survival as well metabolic diseases such as diabetes. The structure-based design and optimization of a novel mandelamide-derived pyrrolopyrimidine series of PERK inhibitors as described herein, resulted in the identification of compound 26, a potent, selective, and orally bioavailable compound suitable for interrogating PERK pathway biology in vitro and in vivo, with pharmacokinetics suitable for once-a-day oral dosing in mice. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy)
Show Figures

Figure 1

21 pages, 4587 KiB  
Article
Increased Mobile Zinc Regulates Retinal Ganglion Cell Survival via Activating Mitochondrial OMA1 and Integrated Stress Response
by Jiahui Tang, Zhe Liu, Jiaxu Han, Jingfei Xue, Liyan Liu, Jicheng Lin, Caiqing Wu, Qi Zhang, Siting Wu, Canying Liu, Haishun Huang, Yuanyuan Fu, Min Li, Yehong Zhuo and Yiqing Li
Antioxidants 2022, 11(10), 2001; https://doi.org/10.3390/antiox11102001 - 10 Oct 2022
Cited by 12 | Viewed by 3838
Abstract
Retinal ganglion cells (RGCs), the projection neurons of the eye, are irreversibly lost once the optic nerve is injured, which is a critical mechanism of glaucoma. Mobile zinc (Zn2+) levels rapidly increase in retinal interneuron amacrine cells and Zn2+ is [...] Read more.
Retinal ganglion cells (RGCs), the projection neurons of the eye, are irreversibly lost once the optic nerve is injured, which is a critical mechanism of glaucoma. Mobile zinc (Zn2+) levels rapidly increase in retinal interneuron amacrine cells and Zn2+ is then transferred to RGCs via the Zn2+ transporter protein ZnT-3, triggering RGC loss in optic nerve injury. Zn2+ chelation and ZnT-3 deletion promote long-term RGC survival. However, the downstream signaling pathways of Zn2+ in RGCs remains unknown. Here, we show that increased levels of Zn2+ upregulate the expression and activity of mitochondrial zinc metallopeptidase OMA1 in the retina, leading to the cleavage of DELE1 and activation of cytosolic eIF2α kinase PKR, triggering the integrated stress response (ISR) in RGCs. Our study identified OMA1 and ISR as the downstream molecular mechanisms of retinal Zn2+ and potential targets for preventing the progression of Zn2+-associated neuronal damage. Full article
(This article belongs to the Special Issue Zinc and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop