Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = straw-briquetting fuel (SBF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2047 KiB  
Article
From “Coal to Gas” to “Coal to Biomass”: The Strategic Choice of Social Capital in China
by Qiang Wang, Thomas Dogot, Yueling Yang, Jian Jiao, Boyang Shi and Changbin Yin
Energies 2020, 13(16), 4171; https://doi.org/10.3390/en13164171 - 12 Aug 2020
Cited by 11 | Viewed by 3300
Abstract
Currently, the Chinese government is promoting the transformation of clean energy in rural areas to reduce the consumption of coal to cope with the smog. It is mainly based on “coal to gas”. The development of biomass resources in agricultural areas is an [...] Read more.
Currently, the Chinese government is promoting the transformation of clean energy in rural areas to reduce the consumption of coal to cope with the smog. It is mainly based on “coal to gas”. The development of biomass resources in agricultural areas is an alternative means of energy supply. In order to improve rural energy structure, we propose to upgrade “coal to gas” to “coal to biomass” derived from centralized biogas production (CBP) and straw-briquetting fuel (SBF). This study deals with the question of financing such projects. The public–private partnership (PPP) model is seen as a response that can mobilize social capital to finance investments in these new modes of production and energy supply in rural areas. Based on an analysis of the strengths, weaknesses, opportunities and threats (SWOT) of the two projects considered above, an analytic hierarchy process (AHP) was carried out with the assistance of experts in order to clarify the strategic choices which are more suitable for investors. First, we built a PPP strategic-decision model. The decision model was divided into four strategies (pioneering strategy, struggling strategy, conservative strategy and striving strategy) and two development intensities (conservative and proactive). We used this method to construct a SWOT–AHP model of the PPP strategy for CBP and SBF based on the investigation from the experts. The strategic-decision model identified that a pioneering strategy based on opportunity type is promised for SBF, while a more aggressive type strategy in struggling strategy is essential for the CBP. In order to encourage investors to adopt a positive and optimistic attitude towards the two projects, the public authorities have a role of guidance to ensure the mobilization of the social capital necessary for the construction of the projects. Full article
(This article belongs to the Special Issue Renewable Energy and Capital Markets)
Show Figures

Graphical abstract

21 pages, 1516 KiB  
Article
Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China
by Qiang Wang, Thomas Dogot, Xianlei Huang, Linna Fang and Changbin Yin
Sustainability 2020, 12(3), 983; https://doi.org/10.3390/su12030983 - 29 Jan 2020
Cited by 8 | Viewed by 3675
Abstract
China’s coal-based energy structure is the main reason for the current high-level air pollution and carbon emissions. Now in the North China Plain, the government is vigorously promoting “coal to gas” and “coal to electricity” in the country and the vast rural areas. [...] Read more.
China’s coal-based energy structure is the main reason for the current high-level air pollution and carbon emissions. Now in the North China Plain, the government is vigorously promoting “coal to gas” and “coal to electricity” in the country and the vast rural areas. The development and utilization of biomass resources in agricultural areas is also an effective means of replacing coal. We propose the idea of forming a complementary rural energy structure of “biogas, briquetting, electricity (BBE)” model based on centralized biogas production (CBP) and straw briquetting fuel (SBF) to improve the rural energy structure. This article uses emergy analysis methods to analyze actual cases. It needs to have strengths and avoid weaknesses in mode selection. The process of the analysis reveals the disadvantages and improvement measures. Under the current capacity load, the emergy input and output, eco-economic indicators, sustainable development indicators, environmental load indicators, and economic value have their own advantages and disadvantages. Assuming 100% capacity load, the indicators have great optimization space. Reducing labor input during the planting phase can effectively reduce emergy input. The government needs to provide corresponding support based on the strengths and weaknesses of the project to keep the project sustainability. The development of complementary integration based on local conditions is an important measure to optimize the energy consumption structure in rural areas and improve the ecological environment. Full article
Show Figures

Figure 1

Back to TopTop